Category Archives: Science communication

Like, Wow! – The search for extraterrestrial intelligence and Humanity’s inescapable fear of cosmic loneliness

“Late night for Doctor Jerry Ehman

6EQ and it’s bigger than it came in”

SETI vs the Wow! Signal, The Dandy Warhols, 2012

The Wow! Signal referenced here by Millennial Alt Rockers the Dandy Warhols is considered by many to be the strongest contender yet detected for a message beamed to Earth from an extraterrestrial civilization.

Looking through his printouts of data one evening, volunteer analyst Jerry Ehman saw something remarkable – a strong and coherent signal that had all the hallmarks of originating from an artificially engineered source in deep space. Dandies frontman Courtney Taylor Taylor only captures half of the signal in his 2012 lyrics – but in his defence “6EQUJ5” doesn’t scan so well in 4/4 time. What those letters and numbers describe is the changing signal strength in a narrow band of radio wave energy received by the Ohio State University Big Ear radio telescope as it scanned across the night sky on August 15, 1977. Not the random chirps and squawks of cosmic background noise or radio interference that the facility had been recording since it was first turned to the search for alien messages four years earlier, but a clear and substantial signal that systematically rose and fell in intensity over 72 seconds.

Stunned by what he was seeing, Ehman circled the record on his printout and added the notation “Wow!” in red pen to signal his reaction – thereby creating the catchy moniker by which the signal is still known, even in serious scientific discussion. Some commentators have suggested that if he’d written what he’d actually been thinking, we’d now be calling it the ‘Holy shit!’ signal – but I’ve never had the pleasure of meeting Ehman myself, so I can’t judge how excitable he might be.

Wow_signal

Scan of a color copy of the original computer printout, complete with Dr Ehman’s excited notation that gives the Wow! Signal its name.

 

Why the ‘shock and awe’ response to this brief radio signal? Well, put yourself in Ehman’s no-doubt-sensible shoes. Imagine listening to 4 years of static hiss and the occasional random squawk coming from your home sound system, then suddenly having your speakers burst into life with 72 seconds of music at full volume.

Only it wasn’t music. Or at least, we can’t say whether it was music or not. Each of those 6 alphanumeric digits in the record simply reflects the total energy received by the detectors over a 10 second period. We have no way of breaking that down to say whether there was any kind of modulation to the frequency or amplitude of the radio waves over time – something that might represent the complexity of real information – or if this was just a burst of energy (albeit curiously narrowly focused). So in essence, the speakers roared into life, but we’re not sure whether it was Motzart’s Eine kliene Nachtmuzik, Eminem giving out Will the Real Slim Shady Please Stand Up, or Dylan Thomas reciting Under Milkwood. Or indeed, nothing more than intergalactic feedback.

The problem we run up against with applying any kind of deeper interrogation to the Wow! Signal is that the plan of the SETI (Search for Extraterrestrial Intelligence) programme of the time was essentially ‘lets see if we pick up any signals, then think about how we might analyse them and look for information later’. An understandable deficiency, perhaps – after all, if you’ve never seen a candidate signal before and don’t even know whether or not you’ll detect one, it’s probably not your top priority to invest the limited resources that you have in working out the details of what to do with one. Remember, back in the 70s the search for extra terrestrial life was basically thought of – and funded – a bit like Bill Murray and Dan Ackroyd’s parapsychology research lab in the opening act of the original 1984 Ghostbusters movie. There’s a reason why Dr Ehman was a ‘volunteer’ analyst – very few people were actually getting paid to do this stuff as their day job.

In its practical application, unfortunately, this strategy is a bit like going to a bar with the vague idea of picking up girls, but not getting any farther than a plan of ‘if one comes up to talk to us, we’ll work out what to say then’. If a dark eyed vision of feminine beauty then draws herself up on the barstool next to you and starts speaking huskily in French, its too late to start wondering what she’s saying and making plans of how you’ll respond.

At the end of the day though, the Wow! Signal fit every criteria set by the SETI scientists in their “what to expect in a contact with an intelligent extraterrestrial communicator” guide for young spotters. No one-off surge that could be dismissed as an artifact of 20th century electronics, no random scatter of values that could reflect some radical malfunction of the experimental apparatus – the signal progressed in stately fashion from strong, to stronger, to the strongest value ever recorded by Big Ear in its entire 22 years listening to the skies between 1973 and 1995, and then equally steadily decayed away back down to background levels – exactly what would be seen if the stationary telescope was slowly being scanned across a point source in the distant reaches of deep space by the rotation of the Earth. Hackers playing a malicious joke on the Big Ear team can be ruled out because – sit down for a minute to process this one – it was before the development of the internet, at a time when computers were individual monoliths of mute silicon and wire rather than the networked hive minds of the modern day.

Wait – did I say every criteria? Every criterion, that is, except for one crucial element: whoever it was never got back to us. Despite re-scanning the relevant areas of the sky many times (somewhat problematically, because the Big Ear telescope had two detectors, each focused on a slightly different area of the sky, we can’t be sure which one of those the signal came from) both with Big Ear, and with other more sensitive telescopes of the era and in more modern times nothing, not the slightest apparition of a comparable signal, has been seen again. So unless it was the equivalent of an alien civilization being caught whispering “Shhhh – they’re listening – don’t call me on this number” it does become increasingly hard to credit it as an intelligent communication with every passing year.

Whatever the Wow! Signal was though, what this opens up is the interesting question of just why it is that we are so obsessed with the idea of who or what might be out there among the stars.

Humanity has always populated its Universe with creatures of the imagination – fellow travellers that we have imbued with such agency that we have built stories, mythologies, and even religions around them (and in L. Ron Hubbard’s case, all three). In earlier centuries the ‘outside’ domain where these others might wait for us started in the terrestrial sphere – blank spaces on the map filled with dragons, eldritch creatures, and kingdoms of gold – but as exploration has doggedly filled that vacant territory, alien life forms have been pushed ever further from our doorstep, until now the cracks and crevices and distant spaces of our own world are so thoroughly tested that the location of possible ‘others’ has been pushed far from our own neighbourhood, into the realm of different worlds in the far depths of space.

That’s not to say that our deep desire to find a partner has been diminished by this shift in our horizons.

I’m not even talking about fictional imaginings here. Big Ear, after all was just one cog in a substantial and coordinated investigation that has occupied the energies of serious scientific players since the 1960s. Perhaps even more telling of our human obsession, in the modern era, tech billionaire Yuri Milner has recently committed $US 100 million of his own money to a new, large-scale SETI initiative. That’s not just idle curiosity, that’s someone really willing to buy a full-price ticket on the fairground ride – investing 1700 person-years of equivalent resource (at the average Australian salary – proportionally more if you wanted to outsource it to a call centre in India) in the exercise.

What makes Milner and the SETI community think all this investment – time, money, whole careers of activity in some cases from talented and active scientists – is worth it? Do we have any real reason to believe that there are others out there wondering, like us, at the mysteries of the Universe? Or is it just an existential feeling that, as captured in the words of punk pop balladeer Feargal Sharkey in his 1985 single A Good Heart, “Anything is better than being alone”.

Looking to Geological history for insight on this question, life appears to have evolved pretty much as soon as it could have here on our own planet. The oldest sedimentary rocks preserved on Earth contain within them un-mistakable fabrics revealing the presence of bacteria living 3,700 million years ago. Earlier still, even though their body forms have been erased by the tectonic recycling of the crust, isotopic ratios of carbon reveal the telltale signature of biological processing by ancient organisms as far back as we have rocks to measure them in. Over time, these early inhabitants gave rise to multicellular life, vertebrate skeletons, and ultimately, the emergence of all the glorious complexity and variety of our worldly domain. And, of course, our own sentience – and the accompanying blessing (or curse) of wonder at our existence.

As the late paleontologist and prolific essayist Steven Jay Gould was fond of observing though, there is a real and fundamental question as to what would happen if we re-wound the clock and let the experiment start all over again. I’m not talking here about peripheral issues like whether humans would have tails (or in the prosaic words of comedian Rowan Atkinson, we would perhaps have a different shaped gear stick on the Mini Metro). We don’t even know something as fundamental as whether life of any sort would evolve, or the Earth would instead remain a sterile ball of silicate rocks.

As anyone who has ever tried to bleach a shower curtain can tell you, once life gets going it is remarkably persistent and self-moderating. But that initial quickening – the fundamental transition of inorganic chemistry into living organisms…was it a one-off event of miraculous unlikelihood here on Earth? Or is it inevitable if you put carbon, energy and liquid water together? There, surely, is one of the most fundamental questions at the heart of the mystery of the Universe.

Many theoretical concepts have been developed in this space, but empirical testing is rendered problematic by the issue of pathetic statistics: we’ve basically only got a sample set of one to look at – our own home (and history) here on Earth.

This is one of the reasons why Mars assumes such scientific interest. Ever since 1877 when Italian astronomer Giovanni Schiaparelli pointed his telescope at the Red Planet and claimed to see channels built by Martian inhabitants, we Earthlings have been titillated by the possibility of life on Mars. Subsequent probing of our neighbour by observation missions and un-manned landers has clarified that, while Schiaparelli was well wide of the mark, the dry valleys of Mars may indeed have a tale to tell on the evolution of early life.

Why the big deal though? What possible relevance could the presence of life (either now or in the distant past) out there on the frigid surface of Mars have to us here on Earth? The key is that the Red Planet represents only the second place we’ve really had the opportunity to explore, even in passing. If life also developed there, then you go from a single point of data and the corresponding possibility of life originating by near-miraculous happenstance to the (still statistically dubious, obviously) situation of ‘well, every viable place we’ve looked, life developed’ – which would strengthen our expectations that it may also exist elsewhere in the Universe.

1024px-Burns_cliff

Approximate true-color mosaic image of Burns Cliff in Endurance Crater on Mars, captured by the NASA rover Opportunity. Proof that life once existed on the Red Planet’s surface would assume huge significance to thinking about our place in the Universe by demonstrating that the creation of life is replicable, and our own existence is more than the outcome of a cosmic lottery win of unimaginable unlikelihood.

 

So what about that wider universe then? In the words of Douglas Adams:

“Space is big. Really big. You just won’t believe how vastly hugely mindbogglingly big it is.”

Gaze up into the night sky (as the Big Ear team were probably fond of doing in between their volunteer shifts crunching data back in 1977), and the points of light you see mark out just some of the uncounted billions of stars in the Milky Way galaxy and, in the further distance, billions more galaxies just like our own. We have enough experience now with the careful observations of celestial mechanics necessary to say that most, if not all of these distant stars are probably orbited by their own families of planets. Some proportion of those will presumably sit, like our own comfortable residence, in the so-called ‘Goldilocks zone’ around their respective sun – not too hot, not too cold – where liquid water is stable. If we assume that some proportion of those potential alien domiciles see life kick-started as it was here on Earth (however that happens), some proportion of those biological incubators see the emergence of multicellular life, some proportion of these see development of some form of sentience…the powerful and attractive logic of extraterrestrial civilisations out there – alien eyes staring up at alien suns – becomes obvious.

Which brings us to the Fermi Paradox: when you put it like this, logical argument would seem to suggest that many technologically advanced civilizations might exist in the universe, but this belief seems inconsistent with our lack of observational evidence to support it. Or, as put more pithily by the great Nobel Prize winning Physicist Enrico Fermi himself – “Where is everybody?”

For all our uncounted generations of staring heavenwards and looking for a sign, all the millions of dollars invested in serious SETI research over the past 50 years, what have we got to show for it? No invitations to intergalactic councils. No imperious threats of our imminent destruction. Not even a poignant “I am Ozymandias, King of Kings, look on my works ye mighty and despair” from some long-vanished civilization.

For a point of comparison, the new enhanced Laser Interferometer Gravitational-Wave Observatory in the United States picked up two black holes colliding pretty much the first time it was turned on for a test run earlier this year, and detected another collision just last month. Going by those statistics, collisions between black holes – astronomical features so vanishingly rare in their own right that until recently they were nothing more than abstract Cosmological theory and the fodder for science fiction imaginings – appear to be vastly more numerous than advanced alien civilisations out there.

Actually, speaking of science fiction, for my money it’s probably 20th century writer and futurist Isaac Asimov whose musings on this point best capture the philosophical implications of the search for extra-terrestrial life:

“Two possibilities exist: either we are alone in the Universe or we are not. Both are equally terrifying.”

So to turn full circle back to the curious event that kicked off this discussion in the first place – what was the Wow! Signal? Was this Jor-El beaming out the sum total of Krypton’s knowledge as his world collapsed, in the hope that our distant civilization would receive it and carry on his work? And we’re caught here on Earth saying “hang on, I’ll just get my pencil…oh, they’ve gone.” Or possibly nothing more than some previously unknown natural radiowave phenomenon reaching us from deep space – still a mystery to be explained, to be sure, but lacking the radical overtones of extraterrestrial contact.

Well, perhaps…but then again – I’m sure I’m not the first person to notice this, but the Wow! Signal was received the day before Elvis Presley ‘died’. Coincidence? Or the King being called home?

Delusions of Inadequacy: A review of Curtis White’s ‘The Science Delusion’

In the opening scenes of Mel Brooks’ classic 1974 Western parody Blazing Saddles, Burton Gilliam’s racist overseer Lyle demands that his black railroad labourers perform “a good ol’ nigger work song”. When the obliging work gang, led by Cleavon Little’s Bart, burst into an elegant a cappella version of Cole Porter’s ‘I get a kick out of you’, Lyle stops them, and he and his cowboy colleagues show them what a ‘real’ negro song is supposed to be like, with a spirited rendition of ‘De Camptown Ladies’ – complete with minstrel dancing and derogatory mispronunciation – while the black labourers look on dumbfounded, unable to relate to the racist caricature played out before them.

The stereotyping skewered so effectively in this scene bears close parallels to the views presented by Curtis White in his book ‘The Science Delusion’.

White’s stated aim is to critically examine the ‘privileged place’ of science in secular western society. His thesis though is built around a definition of ‘science’ that I fail to recognize, and a crude caricature of the scientist – a cold, detached savant unable to appreciate human emotions or true beauty – that seems to have been based largely on watching re-runs of Big Bang Theory.

Bart and his fellow convicts responding to overseer Lyle's entreaty: “Now come on boys, where's your spirit? I don't hear no singin'. When you were slaves, you sang like birds. Go on. How 'bout a good ole nigger work song?” Still image taken from Mel Brooks' 1974 comedy "Blazing Saddles".

Bart and his fellow railroad labourers responding to overseer Lyle’s entreaty: “Now come on boys, where’s your spirit? I don’t hear no singin’. When you were slaves, you sang like birds. Go on. How ’bout a good ole nigger work song?”
Still image taken from Mel Brooks’ 1974 comedy “Blazing Saddles”.

At the heart of White’s failed analysis lies the equation of science with a moral and political philosophy. It isn’t enough that science produces new ideas and insights to inspire discussion – White wants to be told what to think about them, complaining that science doesn’t inform us how to judge its discoveries. “Far too many scientists”, he writes, “leave the ethical meaning of their work to people bereft of moral imagination”.

But as any serious student of science could tell you, White is tilting at windmills of his own imagination here. Science is nothing more nor less than an ordered way of assessing problems and testing ideas – a systematic approach to problem solving and self criticism. It is explicitly not a code of Bushido by which to live.

At the heart of White’s critique though is not a dislike of science itself – indeed, as becomes apparent in the later chapters of his work, White actually both understands the nature of the scientific method, and appreciates the beauty to be found in science through the challenge it poses to the existing order. Rather, the over-riding narrative is one of visceral disrespect for the practitioners of science, expressed through sweeping generalizations that if you replaced the word ‘scientists’ with ‘Asians’ might have him suspended from the faculty at Illinois State University. It got to the point where I kept expecting arguments to be prefaced by a paraphrasing of the old vituperative racist’s standby: “Don’t get me wrong – some of my best friends are scientists, but…”

It is not that White’s criticisms are entirely without merit – indeed, many of his individual targets are well chosen. Richard Dawkins and the late Christopher Hitchens can, as White pointedly observes, be overbearing and un-necessarily dogmatic in their commentary. Likewise, Sebastian Seung and others in the public vanguard of neuroscience do often lapse across the dividing line between science communication and science fiction. And yes, I’m comfortable conceding White’s point that many scientists – even very good ones – are probably mediocre to appalling poets, falling at the first hurdle when trying to use evocative language and imagery to capture the beauty and nuance of their work.

At the same time though, I don’t get a sense that White is looking to establish a level playing field in these regards – there is certainly no indication he would expect a poet writing on the nature of life and the universe to have a firm grasp of virology or particle physics.

Such uneven treatment is a notable and distracting element throughout the text. White calls to Tom Waits lyrics, pop culture movies, and novels as sources of rhetorical strength in his own writing, but would deny his antagonists any written form not as formally codified and structured as the 19th century German philosphical treatises he is so fond of.

White is also quick to point out sloppy structure and inadequate definition of terms in the writing of those he seeks to criticize…but then takes equal liberties himself, and all too readily forgives the linguistic sins of those whose work he would co-opt to his purposes. He takes umbrage, for example, with Jim Watkins’ description of humans as ‘products’ of evolution – suggesting with a sniff of derision that such terminology places us on a par with the output of some cosmic factory conveyor belt. A virtually identical linguistic allusion, however – the world being a ‘product’ of the self in Schelling’s philosophical arguments – is then later adopted by White himself without comment.

Such uneven handling might be forgivable in an undergraduate thesis, but White is a career wordsmith – a novelist, essayist, and academic. He obviously cares about, and has considerable mastery of, the English language – continually waving the flag for well-structured and elegant communication throughout this book – so such double standards are at best sloppy, and at worst self-serving hypocrisy.

With his fundamental thesis stretched painfully thin and his narrative structure riddled with such inconsistencies, White frequently over-reaches in seeking to generalize his individual criticisms to a comprehensive attack on the essence of science – as where he argues that because a scientist (specifically in this instance, neuroscientist Seung) has produced a bad philosophical argument, science cannot relate to philosophy or art. The logical corollary of this is that if Salman Rushdie burns the toast, writing can have no relationship to cooking.

If scientific writers and commentators have failed to appreciate the artistic and sociological implications of their ideas – and rest assured, many have – it is because of their personal inadequacies, not because of anything to do with the nature of science. There is no ‘Science Pope’ sitting on a throne issuing encyclicals about how scientists should relate to other ideas and viewpoints.

When he writes that Christopher Hitchens “reduces religion to a series of criminal anecdotes…[ignoring] virtually all of the real history of religious thought, as well as historical and textual scholarship”, White himself willfully overlooks the contextual framing of Hitchens’ writing. Hitchens is not offering up this critique of religion de novo, but as a deliberate counterpoint to the historically promulgated view that we should think only of the positive philosophical and sociological functions of religion, and ignore the darker side of its use as a justification for war, social injustice, and other abuses.

Hitchens and Dawkins are not writing to engage with the enlightened philosophers and thinkers of the world. The two are the bulldogs of the humanist viewpoint deliberately setting out to take on and worry the one eyed commentators expounding conservative religious polemics and attempting to dominate the cultural airwaves. Rather than taking the moral high ground by constructing an artful, comprehensive and syntactically complete thesis and sitting back to watch it be ignored or misrepresented by their opponents, they plunge in with the rhetoric of broad engagement – taking on their intellectual opponents in hand-to-hand combat.

I might not approve of everything Dawkins says, but I am grateful for his occupation of this position. Dawkins is the Charles Bronson of scientific writers – an enforcer out there brawling in the street to control the baying mob so the rest of us can get on with our work.

By far the most distracting of White’s narrative straw men though is his placement of words into the mouths of his intellectual sparring partners to make them into obvious cartoonish buffoons, so that he can then ride to the rhetorical rescue with a devastating rejoinder. Yes, I know the Socratic dialogue (an imagined discussion with a naive or foolish companion) is a valid and effective rhetorical device with a long and rich history in Philosophy – one I appeal to myself on occasion. I’m just not sure that Socrates ever used the approach to so transparently belittle his contemporaries or score cheap personal points. Fundamentally, to paraphrase US Senator Lloyd Bensen in his 1988 Vice-presidential debate smack-down of Dan Quayle: Professor White, you’re no Socrates.

Putting foolish words into the mouth of your opponent does not enhance your own intellectual credibility. Reproduced from Bill Waterson’s Calvin and Hobbes cartoon strip, originally published January 18th, 1987.

Putting foolish words into the mouth of your opponent does not enhance your own intellectual credibility. Reproduced from Bill Waterson’s Calvin and Hobbes cartoon strip, originally published January 18th, 1987.

Behind the claims to an intellectual high ground, White’s true motivation perhaps emerges as something closer to sour grapes in a series of unguarded comments around the demarcation he sees between science and what he would stake out as his own home ground – art and literature.

He criticises Hitchens’ “privileged position on the New York Times best-seller list” as if this was some hereditary title Hitchens had unfairly usurped from its rightful holder, and complains of science “being given every kind of opportunity to make its case to the public, including high-tech presentations and best selling books”, while philosophers sit unread and unremarked upon on unvisited library shelves. White seems to imagine there are an endless array of publishers and TV commissioning editors beating down the door of theoretical physicists desperate for new books on their work and its relationship to the fabric of reality. In the real world though, I’m afraid that if Schelling and his fellow academic philosophers can’t get their own TV series, its not because those nasty scientists have formed a cabal to dominate the Western cultural conversation and black listed them.

In seeking to establish the boundaries between the qualities of art and science, White speaks of transcendence – but his framing of the term is deeply flawed. His juxtaposition of Beethoven with the industrial design team at Proctor and Gamble is manifestly ludicrous (although not as over the top as his analogy of the company motto “GE: Imagination at work” with the historically laden Nazi concentration camp slogan “arbeit macht frei”). Under such a framing we might equally compare Isaac Newton with George Formby to establish (with apologies to fans of “When I’m Cleaning Windows”) a countervailing majestry of science over art.

If ‘art’ is the common factor, White would lump together the good, bad and indifferent – Beethoven, Picasso, and Hitchcock with internet memes and LOL cats. It is actually the transcendence of genius of which his examples speak, and I would be far more generous than White in my attribution of this to other fields. Contrary to his criticism, there is unquestionably a form of genius in convincing an already overweight, well-fed consumer that they really want to eat a hamburger right now. Or in convincing an intelligent human being to take up a habit like smoking when they know it will shorten and decrease the quality of their life. Yes, it may be an evil genius…but genius, none the less.

White’s view ultimately comes across as narrowly bourgeois – creation is only worthwhile if it occurs in the critical space occupied by he and his coterie. Things that touch, move, or inspire the masses are worthless. We (I would happily include myself among White’s great unwashed masses) are not even allowed to appreciate and value art unless it’s for the reasons he wants us to. According to White the ‘wrong’ view of art “is the assumption now even of arts councils and, as far as I know, the artists they fund.”

The artists they fund? Did I mention the odour of sour grapes?

Wow. So now its not just the scientists, but a conspiracy running right to the heart of the all-powerful arts council Illuminati! Did White have Dan Brown ghost write this chapter?

With presumably unintended irony, the nature of what I would define as science is actually not far removed from White’s phrasing of Schiller’s definition of art: “It refuses the world as something already determined…[offering] a welcoming openness to change”.

I find myself suspecting that a much more positive contribution to public discourse could have been laid on this foundation, but if White’s fundamental drive is to encourage active thought and challenging of ideas in society, this book has probably done a good job of alienating a substantial slice of his potential constituency – namely those critical thinkers who would describe themselves as scientists.

Therein lies the tragedy of this work – I know I’m not White’s target audience…but I could have been. There are many areas in which I have some sympathy with White. I share his appreciation for the Romantic spirit – with the best art (like the best science) to be found in the overturning of paradigms, and the challenging of comfortable authorities.

And when he can rise above the vitriol and histrionics, he’s a good writer – even with a pleasingly dry sense of humour. Anyone who can skewer his opponent’s philosophical knowledge with the pithy “Dawkins knows sweet nothing about Foucault” has my utmost respect. Yes, this does rely on a mispronunciation of Foucault, but I imagine you’re there well ahead of me on this one.

Part of me even thinks it might well be enjoyable to share a bottle of good wine with White and talk about his ideas…but in the face of his espoused views on scientists, I fear this might be a bit like Louis Armstrong sitting down for a chat with Benito Mussolini – a big fan of jazz music according to his son Romano, but otherwise unlikely to have much common ground with the great African-American musician.

At the end of all the analysis I find myself left, disappointingly, as Bart – the hero of Blazing Saddles – looking on bemused from the sideline as White crow dances and sings his minstrel song of science – ultimately showing more about his own biased views than offering any kind of serious analysis.

A Nice Glass of Montepulciano: Risk, Lies, and Politics in the L’Aquila Earthquake

“the scientific community tells me there is no danger, because there is an ongoing discharge of energy. The situation looks favourable”.

Bernardo De Bernardinis, dismissing the risk of a major earthquake at L’Aquila on March 31, 2009…5 days before 309 people died in a magnitude 6.3 earthquake in the city.

De Bernardinis – together with senior Italian scientists Enzo Boschi, Giulio Selvaggi, Franco Barberi, Claudio Eva, Mauro Dolce, and Gian Michele Calvi – ultimately had cause to regret the flippancy he displayed in this press conference. As has been widely reported the seven, then members of the Italian National Commission for the Forecast and Prevention of Major Risks, were found guilty of manslaughter in an ensuing trial and sentenced to 6 years in prison.

That outcome is still under appeal, but this case and its ramifications continue to reverberate through the world of science.

Like many the world over, I was stunned and outraged by the verdict in October last year (see my original blog post Fairy Tales on Shaky Ground – Scientific understanding and the Italian court system – WordPress 25/10/2012). That original response though was not a proud moment in my record as a researcher and analyst. My rush to public pronouncement before I had gathered the full facts of the case could almost have come straight from the 2GB talk radio playbook.

Having had cause to look further into the trial and its participants over the ensuing months, while I wouldn’t exactly say I’ve undergone a Damascene conversion, I have come to appreciate that this case is more nuanced and complex than I had originally assumed…and a much more compelling tale for that.

To dismiss a red herring up front: this was never about earthquake prediction. The seven were not prosecuted – as many commentators in the English-speaking press initially suggested – for failing to forecast the earthquake, or for neglecting to advise the evacuation of the city. Rather, the case was brought for undermining public safety by providing – in the words of Fabio Picuti, the public prosecutor in the case – “inaccurate, incomplete, and contradictory information” about the dangers of seismic activity occurring in L’Aquila in the weeks leading up to April 2009.

The L’Aquila earthquake was no bolt from the blue. As we can see in this map, L’Aquila lies at the heart of one of the zones of highest seismic risk in the tectonically active Italian peninsula – and as I noted in my earlier blog, the city has been devastated by earthquakes on no fewer than 7 recorded historical occasions, dating back to 1315.

Earthquake Hazard Map for the Italian Peninsula, showing the peak ground acceleration with a 10% probability of being exceeded in 50 years. For reference, a ground acceleration of 0.001g is perceptible by people, at 0.02g people can lose their balance, and at 0.1g light property damage can be expected. Produced by the Italian National Institute of Geophysics and Volcanology, 2005.

Earthquake Hazard Map for the Italian Peninsula, showing the peak ground acceleration with a 10% probability of being exceeded in 50 years. For reference, a ground acceleration of 0.001g is perceptible by a careful observer, at 0.02g people can lose their balance, and at 0.1g light property damage can be expected. Produced by the Italian National Institute of Geophysics and Volcanology, 2005.

In the face of this record, it’s no wonder that public concern was high when a series of significant seismic tremors were felt in the city during the spring of 2009. This concern was further sharpened by the pronouncements – widely condemned in the scientific community – of laboratory technician Giampaolo Giuliani, who attracted wide publicity with his claims that variations in radon gas levels indicated an imminent large earthquake in the area.

Against this climate of public anxiety, the seven members of the National Commission for the Forecast and Prevention of Major Risks – the L’Aquila Seven, as they have become widely labelled – were given the task of evaluating the risk these tremors represented, and duly met in the tense and shaky city on March 31st, 2009.

According to Giulio Selvaggi – a member of that ill-starred seven, and director of the Italian National Earthquake Centre – the scientific consensus expressed at the meeting was anything but reassuring. “If you live in L’Aquila, even if there’s no swarm [of earthquakes],” Selvaggi is on record as saying, “you can never say, ‘No problem.’ You can never say that in a high-risk region.” Notably, Selvaggi’s claim of appropriate caution and respect for uncertainty among the scientists on the panel is supported by the official minutes of the proceedings.

So how did this message of watchful preparedness become De Bernardinis’ dismissive ‘the scientists say don’t worry your pretty little heads about it’?

Therein turns the tale.

You’d struggle to suspend disbelief if this turned up in a Dan Brown pot boiler, but the narrative gods smile upon us here. It turns out that De Bernardinis’ then boss – Guido Bertolaso, Director of the Italian Civil Defense committee – was having his phone tapped by the police at the time this episode was unfolding (due to unrelated ongoing corruption investigations…ah, Italy, land of simple honest folk and open government).

In setting up the Commission meeting with L’Aquila town councilor Daniela Stati, Bertolaso was recorded as saying:

“So they, the best seismology experts, will say: “This is normal, these phenomena happen. It is better to have 100 level 4 Richter scale tremors rather than nothing. Because 100 tremors are useful for dispersing energy, so there will never be the dangerous quake. Do you understand?”

Remember, this is the day before the Commission meeting in L’Aquila.

Sound familiar? It should – that’s pretty much point for point the story De Bernardinis offered at the post-meeting press conference – as quoted in the introduction to this post.

Warming to his ‘keep calm and carry on’ message, when asked by a journalist at that press conference if the public should sit back and enjoy a glass of wine rather than worry about earthquakes, De Bernardinis famously replied: “Absolutely, absolutely, a Montepulciano” – playing to the gallery in favouring that deep-hued rustic red from the local Abruzzo region.

“Absolutely, absolutely, a Montepulciano” – words that came back to haunt spokesman Bernardo De Bernardinis.

De Bernardinis has subsequently claimed that he was merely trying to summarise the view of the scientists at the meeting – but his erstwhile colleagues dispute this strongly. There is no mention of the ‘seismic discharge’ idea in the official minutes, and Boschi, Selvaggi and the other indicted scientists stated unequivocally during the trial that De Bernardinis was making remarks along these lines before the Commission proceedings even got underway.

The balance of evidence then would appear to indicate that those scientifically invalid, overly reassuring comments were essentially a scripted message De Bernardinis had been sent along with by his political master – with the meeting laid out as nothing more than an elaborate public relations event to dismiss the concerns of the local residents.

Indeed, as a PR exercise, the initial press conference was an unqualified success…and it is to that ‘success’ that the L’Aquila Seven owe their subsequent prosecution. To quote Simona Giannangeli, a lawyer representing 8 bereaved families in the court case:

“You could almost hear a sigh of relief go through the town. It was repeated almost like a mantra: the more tremors, the less danger.”

Calming mantra it may have been. Sadly, it was also fatally inaccurate. Minor tremors do not pre-sage a significant earthquake in any meaningful way…but nor do they lessen the risk as De Bernardinis had implied.

That fateful statement was ultimately costly for many, with the trial judge recognising ‘a direct causal link’ between those comforting pronouncements on behalf of the Commission and the deaths of 29 victims – largely residents who are reported to have forgone, expressly on the basis of the Commission’s reassurances, their traditional precautionary response of sleeping outdoors, or hurrying outside at the first sign of a tremor.

De Bernardinis looks pretty bad in all this – as does his former boss Bertolaso, who many commentators have suggested should have joined the seven men in the dock. What of the other six though – the scientific members of the Commission. Are they just blameless dupes, unfairly ensnared by the machinations of a Machiavellian public servant?

Where my view has changed on this point is that now, regrettably, I think not.

Don’t get me wrong here – I don’t for a moment consider that culpability for manslaughter is something that can reasonably be laid at their door – Selvaggi and his colleagues were just one link in a long chain of causation and negligence leading to the many tragic outcomes in this episode. Where the snow-white credibility of the group starts to drift though is that these were not just 6 scientists meeting in the cafe over a glass of wine (Montepulciano or not) to discuss the situation. This was a legally constituted committee of experts, convened in L’Aquila by the Italian government specifically to address not just the seismic risk itself, but public perceptions of that risk.

Franco Barberi, a volcanologist at the University of Rome and the Commission’s then-vice-president, stood alongside De Bernardinis at that March press conference. He could have turned to his colleague and said – in impeccably stylish Italian phrasing of course – “Whoa up there Bernardo, which meeting were you just at, ‘cos that’s not what we were saying.”

Okay though, let’s give Barberi a free pass on that one for now – anyone can be ambushed, caught off-balance in the glare of the spotlight, after all. But Barberi and the other members of the committee then had every opportunity to think over De Bernardinis’ widely reported comments in the following days – to see how they were being presented by the media, and the effect they were having on public opinion and actions. If they felt that the statements were inaccurate or inappropriate, they could have made their feelings known and corrected the apparent mis-representations for the benefit of the people of L’Aquila.

None of them did.

Any of the 6 scientists could have, at any point in the next 5 days, put out a press release saying “actually, that stuff that’s being reported in the papers, that’s (a) scientifically inaccurate, and (b) not a reflection of what we concluded at the meeting” or – and this is the important one – “remember, earthquakes can’t be reliably predicted, and L’Aquila is in a zone of high seismic risk – all residents should take whatever precautions they feel are appropriate any time they are concerned about tremors”. That’s all it would have taken.

But they didn’t.

Instead the 309 victims of the L’Aquila earthquake went to their graves that April night believing that the falsely comforting words offered by De Bernardinis at the press conference carried the imprimatur of Selvaggi and the other scientists on the committee.

Here is where the fault lies for the scientists. Their willingness to abrogate responsibility for the discussion of seismic risk and scientific uncertainty to De Bernardinis – the one non-scientist on the Commission panel that March evening, let’s not forget – is like the Chief Financial Officer of a major corporation handing off the presentation of the accounts to the head of public relations.

While our metaphorical PR executive should, we would hope, be competent in their own field, they may lack the expertise and authority to speak for the financial state of the company…and worse they could well – as De Bernardinis clearly did – have their own agenda to push. If things then go all GFC and the company’s financial report turns out to have been an artful construction of smoke and mirrors, the responsibility ultimately comes back to the CFO for their inappropriate delegation and dereliction of duty. If you’re the one who lets ‘the smartest guys in the room’ get away with it, you ultimately have to share the fall out – just ask David Duncan, former Lead Partner for the Enron account at the (equally former) Arthur Andersen accounting firm.

Perhaps the final word though should go to public prosecutor Fabio Picuti:

“I’m not crazy. I know they can’t predict earthquakes. The basis of the charges is not that they didn’t predict the earthquake. As functionaries of the state, they had certain duties imposed by law: to evaluate and characterize the risks that were present in L’Aquila. They were obligated to evaluate the degree of risk given all these factors, and they did not.”

Rosetta Stones and Rugged Men

The Rosetta Stone - prize exhibit of the British Museum...and extended scientific metaphor.

The Rosetta Stone – prize exhibit of the British Museum…and extended scientific metaphor.

There are all kinds of arguments to be made about the imperial history that saw Britain amass the huge treasure trove housed in the British Museum, and whether ‘finders keepers’ should actually be a valid point of international law. Unarguably though, this collection is one of the most glorious and inspiring concentrations of culturally significant historical artifacts in the world. And amongst all this splendour, the most visited antiquity is not some golden treasure or grand architectural marvel – but a simple carved slab of rock – the Rosetta Stone.

This artifact has been displayed behind protective glass since 2000, but when I first visited the museum in the simpler (or perhaps more naive) days of the previous century, the stone was tantalisingly exposed to the world, lying in a steel cradle where I could have reached out to gently touch its ancient surface, had I been so inclined.

The stone itself is a slab of dark, fairly fine-grained granodiorite, a broken fragment of a previously larger tablet inscribed with a decree issued by Ptolemy V in 196 BC, commemorating his ascension to the Egyptian throne. Neither the elegant solidity of the stone though, nor the content of the inscription, explain why this piece is so inspirational and universally recognised.

Instead, the Rosetta Stone has entered our lexicon as the ultimate cypher – the key to breaking the deepest of codes – reviving a dead language.

The Ancient Egyptians were a famously literate society. We’re not talking the mass literacy of the modern world of course, with only around 1% of the population – at a generous estimate – able to read and write. This is a rate put to shame by even modern laggard states like Burkina Faso, where literacy extends to 21.8% of the population – the lowest rate in the world by current UN reckoning. Egypt’s 1% though stand out through the mists of history for having produced, among other milestones in the development of civilization, one of the earliest true traditions of narrative literature, recorded in an array of letters, poems, and commemorative autobiographical texts celebrating the careers of prominent officials. Beyond these temple walls and epic monumental writings of storied fame though, the Egyptians also left a record of the day-to-day function of their highly ordered society – of harvests and recipes, contracts and legal disputes – on papyri and tablets that have withstood the ravages of time in the hot dry climate of the Nile valley and its surrounding deserts to preserve a historical record of the ancient world unique in its depth and completeness.

The important element for our story though is that when first re-discovered by the explorers and enquirers of an enlightened Europe intent on understanding and controlling (and returning to our opening discussion of the British Museum, often exporting) the mysteries of the world, this treasured store of information was locked away – hidden, denied to the hopeful scholars – behind the apparently impenetrable barrier of lost language – with understanding of both hieroglyphic (the famed pictographic writing of Pharonic tombs and Hollywood blockbusters) and the simpler written version of Ancient Egyptian erased by the shifting sands of time.

Where the Rosetta Stone enters the picture is that it’s message of glory and divine rule is inscribed not once, but three times, in three different languages – those two lost Egyptian scripts and, crucially, the very much alive (at least for upper class educated Europeans of the 19th century who had been to the right schools) ancient Greek – for which we can thank the fact that the Ptolemaic Dynasty was actually founded by Macedonian general Ptolemy Soter, who installed himself as ruler of Egypt in the carve-up of Alexander the Great’s empire in 323BC. Even in its broken state (none of the three versions of the inscription is complete), this combination provided a starter kit for the eventual translation of the previously lost Egyptian languages. The Rosetta Stone, in essence, provided a single example of spectacular clarity that made sense of a much larger array of other information, unlocking that vast catalogue of previously indecipherable records.

The concept of a cypher along these lines is not uncommon in observational science. We often look to sites and specimens where relationships or natural processes seem expressed with unusual clarity or simplicity in order to illustrate our ideas or to use as the basis of discussion.

This is certainly not a new idea when it comes to theories regarding the nature of geological systems – indeed, it’s as old as the science of Geology itself. James Hutton – the 18th century Scottish polymath who surely boasts a claim as strong as any to be the intellectual father of this field – didn’t try to explain his ideas on the dynamics of the world by picking up the nearest pebble. On the contrary – he was renowned for taking friends and dignitaries on field trips to view exceptional exposures he had located that seemed to present particularly clear examples of the phenomena he was discussing. His Rosetta Stones.

Even today, we look to such unusual examples where the complexity and vagaries of natural history seem momentarily brushed aside to reveal unambiguous evidence of a physical process in action.

The corollary to the importance of such examples though is the critical question – where should we look for our Rosetta Stones? To give away the ending here, the smart money is on “anywhere and everywhere”…but this measured insight often proves surprisingly difficult to impart. Rather, there is a persistent belief among many in the profession that the importance of an outcrop is (or at least, with a plaintive appeal to cosmic justice, should be) in inverse proportion to the ease with which it can be accessed.

Release a group of Geology students into the wild on a mapping exercise – especially, it should be said, young male students, and their first reaction usually isn’t to sit down and plan an efficient programme of work. It’s to decamp to the highest, most rugged, least accessible area of the field.

At the heart of this challenge lies some pretty fundamental human psychology. We love stories – and whatever we might tell ourselves, we spend much of our lives with an ear half tuned to an internal narrative of how our actions stack up. “I had to ford the river in spate, vanquish the dragon, then climb to the highest room in the tallest tower” is simply more appealing than “well, I just poked about under the bush and there it was.”

Which leads me to the rugged man maxim – an empirical law derived from observation of generations of young Earth Science students in action. In its purest form, this represents a belief that the most important outcrop in a district – the most informative, the most significant to unravelling the ambiguous twists and turns of geological history – will be found at its pole of inaccessibility: the hardest point to reach.

Besides giving rise to a host of sore and sun-burnt students though, does the Rugged Man Maxim stack up when it comes to results? All those trips I took as field trip leader to Andalucian Accident and Emergency departments trying to help testosterone-fuelled young men explain in broken Spanish just where the thorns were lodged – were they actually associated with greater understanding on the part of the bandaged apprentice geologists, and higher marks in their mapping projects?

I think we all already know the answer to that question.

Certainly, physically and logistically challenging fieldwork can produce results of great significance and enrich our understanding of fundamental questions. But the importance of a locality does not derive from its accessibility or spectacular grandeur – it is incidental to it.

The Burgess Shale was discovered in 1909 by paleontologist Charles Dolittle Walcott in a remote mountain pass, high in the Canadian Rockies. The exquisitely preserved 505 million year old fossils extracted from this spectacular wilderness setting – as far from the Madding Crowd as you could hope to find yourself – provided a new window on life in the ancient Cambrian oceans – a Rosetta Stone that changed and enhanced our understanding of a host of other, less complete and more poorly preserved fossil fauna.

At the other end of the scale, you can get to the La Brea Tar Pits in urban Los Angeles on the Metro Rail – but that doesn’t stop the Pleistocene fossil fauna preserved in the tar being any less inspiring and scientifically significant in its own way, as the best known and most exquisitely preserved record of the extinct mammalian megafauna of North America.

Neither methodical and thorough investigation nor boundless investment are guarantees of significant discovery, and equally, sometimes it really is simply enough to be in the right place at the right time – as in 1928 when William P. “Punch” Jones and his father were playing horseshoes in Peterstown, West Virginia, and happened to turn up a 34.48 carat alluvial diamond, the largest such gem found in the United States to date.

Fundamentally, there is no justice in the layout of the world and its geological treasures. The key exposure that will lay clear the mysteries of a study area and lead to a bankable discovery may well sit under a poisonous thorn bush atop the windswept peak of the highest mountain in the district. But it’s just as likely to be right beside the trail where you stopped the 4WD for the night in the shade of a beautiful old acacia tree, so don’t discount your good fortune on those occasions when you do get lucky.

Old Men and the Sea – the curious persistence of willful disbelief in Anthropogenic Climate Change

Imagine yourself, for a moment, adrift in a storm-tossed wooden lifeboat. Yours is the only vessel in sight – the only refuge in the heaving sea stretching to the horizon all around you. With a sinking heart – rightly concerned by the potential consequences – you realise the water level in the bottom of the boat is rising. You have nowhere else to go.

Now, the environment in which you find yourself may well be the source of this water – the persistent rain, the sea spray washing over the sides, perhaps even marine bivalve Teredo navalis – shipworms, as they were known in the days of grand wooden ships plying the seven seas – chewing their way through the hull of your fragile boat. That doesn’t mean that the signal fire you lit in the stern might not also be causing a leak. It’s not like you have a leakage budget to work within – “it’s okay, I’m going to take on a gallon of water an hour, so I can shave some more wood out of the sides and stoke the fire, and the rain will ease up to compensate”. Aware that fire is known to consume wood, and that, as my boat is made of wood, I could reasonably infer that my cheery blaze might be a factor – and one over which I had control, the prudent thing to do until I was pretty darned sure of things would be to douse it.

Of course, despite my obvious and melodramatic allegory here, we’re not really talking about drifting lifeboats. Rather, in a summer in which the Australian Bureau of Meteorology has found it necessary to add new colours to the temperature scale on their national synoptic charts, changing climate is probably a fair topic for engaged conversation.

Although I’m a professional scientist, and try to keep myself pretty well informed, I’m under no illusion that I can offer a fair and valid critique of understanding in this area. If that’s what you’re after, I heartily suggest you check out the US Global Change Research Program (www.global change.gov). Me? I’ll put my hand up right now and tell you I don’t fully understand the physics of greenhouse warming, the consequences of changing landscape albedo to a solar energy budget, the details of orbital precession, or the design and function of supercomputer models of climate sensitivity. Unlike a number of (usually self nominated) commentators on climate science though, my philosophy in these circumstances is not to go ahead and shoot my mouth off anyway – at least not without a few glasses of good wine inside me – so this is not principally an essay about the rights and wrongs of understanding on anthropogenic climate change.

Instead I want to talk about the (to me, anyway) curious fact that vested interests and enthusiastic amateurs from all walks of life – politicians, newspaper columnists, school teachers, Jeremy Clarkson – seem possessed of an unshakeable belief that their understanding of climate change and its causes should be given equal weight to, say, Roger Revelle, or the IPCC.

I’m not talking here about debate over how we, individually and as a society, should respond to climate change – what steps we should take, how the cost should be borne. Here opinion and debate clearly should be entertained as we move towards a social contract. But the facts of the matter, the understanding of physical phenomena, does not submit to willpower or popularity. You don’t get to vote by SMS on whether anthropogenic carbon dioxide emissions are a driver of dangerous levels of climatic warming or just a combination of snuggly global duvet and healthy plant food.

By way of analogy to the problem here – diesel has a greater energy content than unleaded petrol. I know that’s true because I read it on the internet. Logically then, if I start putting diesel into my car, it will be more powerful and go further on a tank. Right?

The fact that I used the word logically probably tells you everything you need to know about why it’s important that I listen to my mechanic rather than trying to fix my car myself.

Let’s pursue that metaphor a little farther. Think about it – if this was your car we were talking about (and I might venture here that the climatic system of our entire planet might be a bit more important than that – even if you do wash yours more often than I manage and rotate the tires every 6 months) I doubt you’d be up for self diagnosis – or even taking the advice of Alan Jones – when your engine started knocking. No. I suspect that, like me, you would far rather trust the judgement and experience of auto mechanics who have trained for years and devoted themselves professionally to the diagnosis and correction of engine problems. Even if you did roll up to the workshop door with a worrying knot in your stomach over what they might find under the hood, and just how eye-wateringly expensive it might be to fix.

Yes, some mechanics are better than others, and there may even be shonky ones out there that don’t know what they’re doing, or worse, who are criminally intent on defrauding you by exaggerating or inventing problems. If you do your research though, and find out who other mechanics respect and what they think of each other’s work, I’m pretty confident you could probably do a good job of picking the right person to deal with any engine trouble you might have.

The problem, in its essence, is that ‘opinion’ is a complex and chimeric beast. It covers a spectrum from tastes or preferences, through views on issues of common concern – the ethical and political questions of the day, to views grounded in technical expertise – and here I’d include legal or scientific opinions. The common thread is that all these areas admit a degree of subjectivity and uncertainty – but not all are equal.

You can’t really argue about the first kind of opinion. It would be ludicrous for me to tell you that you were wrong to prefer sticky date pudding to cheesecake. Where this issue starts to go off the rails though is that we sometimes take opinions of the ethical and even the expertise-based sort to be unarguable in the same way such questions of taste are.

The silly – even embarrassing – thing here, at least for somebody coming from a Western philosophical tradition, is that Plato pretty much had this distinction sewn up 2400 years ago.

Today though all too often – whether by design or, I suspect usually more likely, ignorance, we seem to have forgotten this lesson.

Bob Brown, former leader of the Australian Greens and Federal Senator, argued long and vociferously against nuclear power throughout his career, despite not being a nuclear physicist. All well and good – but Meryl Dorey – leader of the Australian Vaccination Network (don’t be fooled by the name – this is a group vehemently opposed to childhood vaccination in all its forms) has used Brown’s record to argue that she should, in a similar vein, be listened to in regards to the healthcare of our children, despite having no medical qualifications of any stripe. The crucial difference between the two is that Dr Brown never represented himself as an authority on the physics of nuclear fission. He was always, entirely appropriately, commenting on policy responses to science, not the underlying scientific understanding. Dorey, in contrast, essentially tries to represent that her views should factor in debate regarding the biomechanics of vaccination and immune response itself – that her personal biases should be weighted equally to expert and scientifically validated opinion.

So – back to climate change – let’s take on board Plato’s distinction for a minute and ignore the opinions of the Nick Minchins and Lord Moncktons of the world. What do professional climate scientists – those experts who have devoted themselves to understanding the detailed interactions of climatic systems and earned the respect of their critical peers – understand to be happening to our climate?

First and foremost, our planet is warming up. Using any of a wide range of indicators (ocean heat content, sea surface temperatures, sea level, temperatures in the lower and middle troposphere, the rates at which glaciers and ice sheets are melting), the overall temperature of the Earth and the corresponding energy in our climate system are increasing.

According to a study recently published by a team of scientists from the Potsdam Institute for Climate Impact Research, there are now on average five times as many months with record-breaking high temperatures at measured locations worldwide than could be expected without significant and ongoing warming occurring. In parts of Europe, Africa and southern Asia, the figures are even worse – with instances of record-setting monthly temperatures exceeding statistical expectation by a factor of ten.

While there are a number of influences on the climate system, such as changing levels of solar radiation and abundance of atmospheric aerosols, independent climate researchers also almost universally conclude that this warming has been produced dominantly by increased levels of carbon dioxide in the atmosphere, with a significant proportion of this emitted by human activities.

Now remember, that’s not me saying this – these are the expert opinions of the big beasts at the climate science waterhole with the expertise and experience to give their opinions real weight. These are the people we should be listening to.

In a recent essay on Science Communication (‘Three Monkeys, Ten Minutes: Scientists and the Importance of Communication Skills’ – WordPress, 18 October, 2012), I used the metaphor of taking sides in a scientific debate you don’t understand being like weighing in to an argument in a language you don’t speak – a Frenchman and a German speaking in Spanish, let’s say – on the basis of liking one participant’s accent more than the other. In the field of climate change, the position of someone who would deny the reality of anthropogenic warming is even more tenuous, because as the debate stands its like 97% of the Spanish speakers in the room (everyone except Pierre’s mother and the crazy old guy whose brother was killed in the second world war and hates all Germans with an unquenchable rage, let’s say) agree that our French friend is wrong-headed and it’s Heidi we should listen to – but still there are non-linguists willing to back up the Frenchman with an unthinking “yeah, what he said” against all comers.

To come full circle to our fragile boat alone on the stormy seas – although the consequences of putting out my fire if it wasn’t reducing my vessel’s seaworthiness might be unpleasant (I’d be wet and cold – and frightened, alone in the vast empty expanse of the ocean), the consequences of not taking action if my hypothesis ultimately proved correct would be much, much worse.

More importantly, although I would really like to know exactly where the water was coming from and which source was the most important (sorry, scientific curiosity has me in its thrall), my first reaction wouldn’t be to set up an interim enquiry and design some experiments. No. Me? I’d start bailing.

The Educational Promise of Online Learning – Rainbow Connection or DNS error: File not found?

The embrace of remote delivery and engagement is often held to offer a revolutionary opportunity in higher education. MOOC learning may be the latest manifestation of this mantra, but the vision is not a new one, with the winds of pedagogical change heralded since the era of chat rooms and dial up modems – management guru Peter Drucker famously writing in 1997 that:

“[T]hirty years from now the big university campuses will be relics. Universities won’t survive. It’s as large a change as when we first got the printed book.”

Well, “So we’ve been told and some choose to believe it…” – so said (or more accurately, sang) Kermit the Frog in 1979’s ‘The Muppet Movie’ – and as students of the great green sage will be well aware, the next line is “I know they’re wrong, wait and see.”

So is online learning really the way of the future? A paradigm shift in the delivery of teaching that will allow instruction and educational inclusion of the world’s masses with greater efficiency and ever decreasing cost? Or is the digital education revolution, like Kermit’s rainbow, a mere illusion – a destination that will ever recede from us as we seek to approach it?

My own engagement with online educational tools stretches back to the early years of the 21st century, soon after I arrived on the scene as a newly minted, enthusiastic lecturer determined to change the world and enrich the intellectual life of generations of engaged and grateful young students. To paraphrase US academic Matt Cartmill, it turns out this was a bit like becoming an Archbishop to meet girls – but that’s another story.

In those days, whiteboards, chalkboards, and slide and overhead projectors (anyone under the age of 30, go ask your parents about that one) were the tools of the trade, but the internet was already rearing its shiny and alluring head in education circles, and tech-savvy early adopters were exploring its potential in all manner of fields.

As I immersed myself in my first year of classes, I soon found keen young students asking – with all the bright eyed intensity of true believers fresh from Scientology boot camp – whether notes would be made available online. Clearly, the thinking ran, if only they could read the notes on the internet, everything would be alright and knowledge and understanding would pass directly into their cerebral cortices and become part of their being.

Young, innovative, and eager to please as I was, I took up the challenge and worked to create learning materials to support my courses, doubling my workload to lay out packages of notes, study guides, and additional readings.

Students expressed their gratitude, colleagues slapped me on the back, line managers signed off on my probationary progress reports and labeled me an innovator. And then along came integrated online learning platforms (or Virtual Learning Environments – VLE – as they’ve since become) and suddenly my eyes were opened.

The ability to monitor student use at an individual level in these integrated platforms meant I could see exactly who was accessing the material, and when. What this brought home to me was that for all their professed desire for more support (and the time invested by me as tutor in preparing material), depressingly few students actually used the support opportunities when they were made available to them.

With the benefit of hindsight, this is no different in its fundamentals to classmates from my own University days who would invest themselves in compiling complete lecture notes – begging, borrowing, and in a few (with the distance of years, rather amusing) cases, stealing to cover the gaps in their trusty ring binders resulting from illness, employment commitments, or benders in the local beer garden – and then never look at them again. This in itself though is probably a truth we would do well to put at the forefront of any discussion of education – the techniques may change, but the fundamental nature of students does not.

Initially I was a bit depressed by this realization. All that work. All my good intentions. I’d built my learning outpost – General Store, Saloon, hitching posts and all – and all I had to show for it was a few tumbleweeds blowing down Main Street.

What I had done in crafting a VLE to my own inner vision clearly wasn’t working for my students, and armed with this realization, I went back to the beginning and re-designed my online support package around the principle of encouraging a more engaged learning model – presenting materials in a range of ways to facilitate and encourage interaction from different perspectives. Yes, more work for me as a teacher, but this time – working to a more defined educational vision – the result was strikingly different. Student use of online resources increased dramatically compared to my initial attempts, the ethic of interactive and independent learning seemed to carry over into contact hours in the classroom, and at the end of the course, yes, student exam marks increased significantly too.

The point in presenting this second act to the story is not to hold myself up as some paragon of virtue (it was, after all, my own launch failure I was addressing here) – it’s that it wasn’t the subject matter that was critical to this change, or the platform. What made the difference was an engaged educator taking the time and effort to make things work.

Ultimately, VLE and online learning are simply new tools for educators to apply to their mission – and even a tool that can in one hand create a masterpiece might in another produce nothing more than a crude caricature. Octogenarian parishioner Cecilia Gimenez became an internet phenomenon a few years ago for her fresco ‘restoration’ in the Sanctuary of Mercy Church in Borja, Spain. The artwork retained the same setting as it had before, the same subject – the plaintive Christ gazing up from beneath his crown of thorns – same intention to inspire grace and devotion in the viewer, yet the addition of Gimenez’s brushwork saw Elías García Martínez’s original Ecce Homo (Behold the Man) – by no means a masterpiece, but a passable religious artwork in the Catholic tradition, by all accounts – turned into what BBC Europe correspondent Christian Fraser described as resembling “a crayon sketch of a very hairy monkey in an ill-fitting tunic”.

Online learning does provide a powerful pedagogical tool that can change the relationship between educator and student. Using such online approaches though is no more likely in and of itself to improve educational outcomes than waving a paintbrush is to produce a masterwork.

Even magic bullets need someone to fire them in the right direction.

French String – Mathematics, Linguistics, and the Nature of Reality

“Daddy,” my eldest daughter asked me, some years ago now (at a time when Europe was but a short train ride away and a welcome escape from the grey winters of Surrey), “What’s the Spanish word for thank you?”

“Gracias.” I replied, pleased by her inquisitiveness “And denada means you’re welcome.”

Warming to the conversation, she went on “Oh. And what’s thank you in French?”

“Merci.”

“And what do they say for you’re welcome?”

I paused for a moment (but only, it must be said, a moment) reflecting on the fact that I had no idea how to express that concept – my ability with the French language extending little further than ordering coffee and croissants for breakfast – before telling her, with all my fatherly sincerity “The French have no phrase for that.”

Now yes, I admit it was a cheap knee-bend to Francophone stereotypes, and a ‘Dad joke’ to cover my linguistic ignorance…and it was probably inappropriate for me to let an impressionable child go on believing this for as long as I subsequently did.

But it does introduce an interesting and important concept – our ability to describe something has no bearing on its reality. Even if my statement were true and the French had, through some curious artifact of linguistic heritage, failed to develop a phrase capable of expressing gratitude, it would not change the fact that such feelings could – and do – exist. Language describes reality. It does not – outside of the most extreme hardline views of social constructivism – define it.

Mathematics too is essentially a language – a language, moreover, that we can use to describe the physical reality of the universe. Most of the time. As with the example of spoken language above though, the critical caveat is that however well mathematics describes physical behaviour, again, it does not define it.

Sir Phillip Bin, the fictional hero of Mark Evans’ radio comedy ‘Bleak Expectations’, muses wistfully on the days before Sir Isaac Newton ‘invented’ gravity, when people falling from great height would ‘simply drift gently and harmlessly to the ground’.

Such satirical diversions aside, Newtonian mechanics works pretty well in describing the interactions of macroscopic objects under the conditions of our everyday experience. But gravitational attraction between two bodies doesn’t fall off in proportion to the square of the distance between them because that’s the way the equation is written – rather, the equation seeks to empirically describe the behaviour that occurs.

As Einstein recognised in his theories of general and special relativity, under certain circumstances – far removed from the world of everyday experience – objects behave in ways that are incompatible with Newtonian physics. In formulating expressions to account for this relativistic behaviour, Einstein did not change the nature of the universe – he simply gave us a new form of language by which to describe the poetry of our existence.

Similarly, the remarkable duality of electrons – whereby they can be shown through physical experiment to possess the characteristics of both a continuous wave function and a discrete physical particle – is only a paradox in the context of the ways in which we have come to describe these sub-atomic features. Fundamentally, the electron is what it is, and if theories are unable to fully account for its behaviour, it is a reflection of the inadequacy of our mathematical approximations for reality, not proof of some cosmic trick set up to titillate a Vegas audience on the quantum scale.

Perhaps the most interesting example of this concept in action, however, is the search for an ultimate physical ‘theory of everything’. The properties of electromagnetism, strong nuclear and weak nuclear attraction, and gravity – the fundamental forces that define and control interactions of matter and energy throughout the universe – converge at high energy, and it is theorized that all four derive from a common underlying property. But just what this is remains a point of hard debate, as none of the individual equations that are so successful in describing the behaviour of each of these forces on the macroscopic level of the everyday can adequately cope with the conditions of this theoretical point of convergence.

This does not mean that there are somehow four separate overlapping layers making up the Universe that don’t quite fit together perfectly where they join, like some kind of badly put together set of existential DIY shelves. Rather, the theory runs that there is one reality, where all aspects of the physical behaviour that we observe in the universe must somehow derive from the fundamental character of matter and energy. The failure lies in the mathematical language in our possession – it’s not just that it’s tricky to calculate the results, standard mathematics is literally unable to describe reality under those conditions.

The ‘theory of everything’ that can account for the emergence and existence of these separate forces is one of the great challenges at the business end of modern physics where the big kids of theory get serious. Tackling this problem however requires not just a dab hand with a slide rule, but the creation – literally – of entirely new forms of mathematics, incorporating additional physical fields and interactions, and even extra dimensions of space.

For the record, I should confess that I’m not one of those big kids – a real physicist would have stolen my mathematical lunch money and sent me crying for home long before we even got to string theory – which I understand is regarded as one of the more accessible (and promising) of these approaches. As secret shames go, I can appreciate that this is not exactly stupendous, but I’ve been happily married for 16 years and don’t get out to as many wild parties as I used to.

The point is, I’m fine with that. I don’t need to understand the higher order branches of mathematics – the high linguistics of the Physicist’s hymnal – to appreciate the reality and significance of what they are trying to achieve in understanding the nature of reality. I wish them well, and look forward to the day that Google produces a Mathematics-English translator so I can appreciate the beauty of their work.

I’m sure even the French would be grateful for that.

Fairy Tales on Shaky Ground – Scientific understanding and the Italian court system

On the 6th of April, 2009, a 6.3 magnitude earthquake centered 9.46 km beneath the Abruzzo region in central Italy devastated the city of L’Aquila, ripping the historic heart out of the city and killing 309 people. While the physical scars from this tragedy are fading, cultural aftershocks are still rippling through the scientific community, and reached a peak unexpected by many this week with the conviction of six Italian scientists and a former government official for involuntary manslaughter.

The seven – members of the Italian National Commission for the Forecast and Prevention of Major Risks at the time of the earthquake – were sentenced to 6 years in prison, and ordered to pay court costs and damages amounting to some 7.8 million Euros.

Their conviction was based principally on a number of statements made six days before the damaging tremor, downplaying the likelihood of a major earthquake. Given the manifest impossibility of reliably predicting Earthquake occurrence with our present understanding of seismic processes, the legal precedent for this is presumably drawn from the Brothers Grimm, with imprisonment the prescribed punishment for failing to spin straw into gold.

Earthquakes are caused by the release of energy as fractures propagate through rocks. They are focused in particular regions where creeping deformation deeper in Earth leads to the build up of stress in the more brittle rocks near the surface. Once a fracture has occurred, the crack remains a discontinuity – a weakness – and tends be a site of further failures in the future.

If you live near such an existing fracture – or fault – the likelihood of experiencing an earthquake increases dramatically. This much we can say with confidence. Certainly, in the long view, no-one can claim to be surprised by the damage wrought on L’Aquila, given the city is built on an ancient lake bed known to provide a geological framework that amplifies the local effects of seismic waves, and has been devastated by earthquakes on no fewer than seven historical occasions, in 1315, 1349, 1452, 1501, 1646, 1703, and 1706.

But when will the next Earthquake happen? Now this – the 7.8 million Euro question – is the holy grail of seismic hazard research, and to date, there is no answer. Anybody who tells you differently is probably emailing from Nigeria to offer you ‘the investment opportunity of a lifetime’.

Despite all the work by teams of dedicated and sometimes brilliant researchers over the past century or so, all the collection of data and analyzing of patterns – even for the San Andreas Fault in California, probably the most intensely monitored fault zone in the world – no distinctive and reliable precursor patterns for major earthquakes have ever been recognised.

To hold someone responsible for failing to predict an earthquake on the basis of preceding activity makes all the statistical sense of having your first tip on Melbourne Cup day romp home, doubling down your house on the trifecta in the next race, and then suing your bookie when the horses fail to place.

So how can this miscarriage of justice have occurred? Why weren’t the charges thrown out at the earliest opportunity?

Fundamentally, as I wrote last week (Three Monkeys, Ten Minutes – Scientists and the Importance of Communication Skills – WordPress 18/10/2012):

“Society is complex, and people hold views for all manner of reasons – personal, cultural, logical, or religious, among others. We [as scientists] do not have to share those views, but we do need to appreciate and respect their reality”

When I wrote those words, I hadn’t expected to be confronted by such a glaring (and dark) example of this relationship at work quite so quickly. Scientifically, the question of earthquake prediction doesn’t even get off the ground, but to a broader population un-tutored in statistics and the language of scientific uncertainty, a population here stung by a great tragedy and searching for someone to blame – a sadly common human trait – the Committee’s statements painted them with a target.

People are incredibly good at recognising patterns. This, as much as anything, is the key to our astonishing success as a species. Unfortunately, the flip side to this is that we look for – and expect to see – patterns even when they are not there. This makes us very bad at evaluating the true risk of rare events.

James ‘the Amazing’ Randi is conducting a long term demonstration of this phenomenon. Every morning he writes on a card “I, James Randi, will die today”, which he then dates, signs, and keeps in his pocket in the knowledge that it will one day (may it be far in the future) be a fitting final demonstration of how apparent correlation can be manipulated to lead our minds astray.

Richard Feynmann related a similar story in his memoir “Surely you’re joking, Mr Feynmann” – where he writes of hearing the phone ring in his University dormitory and having a sudden premonition that his grandmother had died. She hadn’t. The phone wasn’t even for Feynmann, and his grandmother continued in rude good health for some time to come. The point is, we have such thoughts and intuitions all the time – for the most part, they don’t turn out to be correct, but occasionally the fates line up. When they do, the glorious pattern-seeking engines that are our brains get a kick of reinforcing dopamine to say ‘job well done’ and we forget about the 999 previous times it hasn’t worked and start to see a correlation.

If you live near a fault line, you will, inevitably, experience earthquakes. Sometimes big ones, often small ones. Sometimes a large one will be preceded by small ones. But usually not. The stochastic patterns – one earthquake here, two the next week, none for six months – have no significance.

There is a real tragedy at L’Aquila, and there are people who should be held to account. But they are not the scientists who gave an accurate representation of the processes at work beneath the town, and the statistical meaninglessness of looking for patterns in the tea leaves of local seismic activity. Rather, the guilty parties – those who should have known better – are the officials and engineers who built structures – schools, gymnasiums, dormitories – in the city that were not designed or constructed to withstand the well known and historically proven earthquake risk.

So, we find ourselves at the end of act 1 in our re-imagining of Rumplestiltskin – the Miller’s daughter has proven unable to spin her straw into gold and the King is about to imprison her in the highest room of the tallest tower. Perhaps in act 2, Uri Geller will step up to the title role and offer to solve her problems by magic in exchange for first authorship on the resulting scientific paper.

Three monkeys, ten minutes – Scientists and the importance of communication skills

Science and technology have changed almost every aspect of the way we live our lives over the past 100 years, and are at the heart of many major challenges we face today.

Science, however, is nothing more, nor less, than a process by which we seek to understand the forces that shape and control the universe around us, and understanding is not the same as a need (or permission) to act. We can produce fresh water through desalination, or treat waste water (yes, sewage) to the point where it is potable. We can produce genetically modified crops and organisms resistant to disease. Even engineer changes in the system of climate. We know public health would be improved if we banned tobacco. But should we? Do we want to?

How we act on scientific understanding is in essence a social compact between scientists, policy makers, politicians, and the public. At the heart of this is a need that these groups understand one another.

Now, scientists are not so irredeemably bad at the communication game as some stereotypes (such as Scott Adams’ acerbic put-down above) would have us believe. A core part of the scientific process is the need to clearly and persuasively explain ideas to others, and to engage in and foster discussion, testing, and criticism of those ideas. This can take the form of conference and symposium presentations to our peers, tutorial sessions for students, written papers – but however it takes place, an ability to communicate is a key pillar of the scientist’s skill set.

Stephen Hawking is acknowledged as one of the most significant and influential thinkers in late 20th and early 21st century Physics. His mind is capable of soaring on phenomenal flights of mathematical and scientific creativity beyond the realms of thought commonly occupied by many. Were it not for the technological aids that allow him to communicate electronically, however, many of those beautiful theoretical constructions would have remained locked away inside his progressively failing body. A poignant, albeit extreme, variation on George Berkeley’s philosophical construction “If a tree falls in a forest and no-one is around to hear it, does it still make a sound?”

All successful scientists, certainly, must either become good communicators, or develop symbiotic relationships with colleagues able to support them in that domain. Fundamentally, brilliant ideas are not enough – if you are not able to clearly and persuasively explain your idea, it will go unremarked – Science will not grow and prosper from your contribution.

Where scientists may sometimes fall down in the communication stakes is an over-specialisation. We invest so much in developing an ability to discuss and exchange ideas at a high level with our peers that the communication of ideas to non-specialists may become neglected.

Unfortunately, nowhere outside of macroeconomic modelling equations do ‘the general population’ actually behave as perfect, rational beings. Society is complex, and people hold views for all manner of reasons – personal, cultural, logical, or religious, among others. We do not have to share those views, but we do need to appreciate and respect their reality if we are serious about influencing policy decisions. It’s not enough to expect the general populace to accept a paternalistic “trust me, I’m a scientist” as a reason for following your advice. It’s also not among the most successful of pick-up lines.

In the words of Jesse Shore, National President of the Australian Science Communicators:

“…few people base their decision making on just being presented with good science. The communicator’s message must have meaning, be useful and acknowledge the needs, aspirations and concerns of each intended audience.”

It is in this context that a Scientist failing to represent their work to the general population becomes significant – a weak link in the nexus required for the hard-won scientific understanding of natural systems to play a significant role in the development of meaningful policy.

Ceding the communications role to the existing media system may not always be a helpful substitute either. Conventional reportage is built not around nuance and weighted discussion, but the manufacture and presentation of conflict and controversy – which is doubly harmful for complex issues. If you don’t understand the methods used or the calculations undertaken to reach a scientific conclusion, taking sides in the debate – or basing a serious policy decision on it – would be like listening to a Frenchman and a German arguing in a third language you yourself have no understanding of (those dashed Europeans can be so clever that way), and concluding “I agree with the French guy because his accent sounds sexier.”

This is why the scientific community should appreciate – even treasure – those scientists and writers able to genuinely translate our work – to explain complex ideas and arguments to others without diluting their meaning. Simon Singh, Robert Winston, the late Carl Sagan…maybe not Simon Winchester, who has a nice turn of phrase, but to my thinking a tendency to undertake diversions off-topic that detract from the flow of thought (for anyone who may have read any of my previous posts, yes, I know – pot, kettle, black) – for these are our ambassadors – our public face.

This is also why we should welcome and encourage the incorporation of communication skills teaching into science degree programmes. This addition has recently become a core element of the new degree structure at the University of Western Australia where I work – not without some controversy among both staff and prospective students. Personally, I have never needed convincing in regards to the importance of training scientists in this area. Indeed, I would go so far as to say that no-one who has ever marked undergraduate essays from science students could ever query that suggestion.

Beyond my self-serving investment in the idea, however, is a more serious foundation. By training future scientists in the skills and strategies of communication – or at the very least making them aware of the significance of this area – we can work to close this gap and see a better informed discussion of scientific subjects in the broader public sphere.

Increasing the fundamental communications skills of our scientific graduate cohort has additional benefits too. This is about more than just making your ideas sound impressive. Learning to structure an essay, or mastering the rhetoric of a compelling argument can in themselves make our students better scientists – providing a mental template for the robust logical interpretation of ideas. You can collect all the data you want, allow your thoughts so roam as wide and soar as high as the limits of infinity, but like an inversion of Heisenberg’s uncertainty principle, it is the act of precisely describing your findings clearly to others that ultimately crystallizes them – pinning them to the page and making them real.

So my fellow scientists, let us value and applaud the communicators in our midst and work together towards a future of better informed, relevant debate of scientific ideas within the social landscape. To take the discussion full-circle then – we might not be able to touch Shakespeare, but at the very least, let’s all try to up our Monkey Quotient a few notches.