Bling, Rings, and Blind Spots – Alan Bond and the Capacity for Human Self Deception

“They say time is the great healer. But the extent of Australian gullibility when it comes to the life and crimes of Alan Bond seemingly knows no bounds.”

Ian Verrender – ABC News business editor

If all the world is indeed a stage, then the late Alan Bond bestrode it like a personification of 1980s glitz and excess – a walking moral tale…only re-written with a post-modern ironic twist so that rather than being brought low by hubris, the hero rides off into the sunset with the money, the girl, and the applause of the good townsfolk he’s just sold the monorail to still ringing in his ears. It’s probably fair to say that Sophocles – the ancient Greek master of tragedy and comeuppance – wouldn’t approve.

Coverage of Bond’s recent death must have consumed a veritable forest of newsprint, and depending on which side of the line the writers sat (or perhaps whether they had ever invested money with him), he was held up as either a colourful larrikin who dragged plucky little Australia onto the world stage, or an inveterate shyster and self-serving hypocrite. In a way, rather than the stereotypical “somewhere in the middle”, Bond was really both – simultaneously occupying the polar extremes of description like the quantum behaviour of an obscure subatomic particle, and equally impossible to classify by the rules of normal behaviour.

The late Alan Bond - tarnished Australian treasure, visionary entrepeneur, criminal fraudster par excellence. We may not see his like again in this more worldly age. And if you do, check your wallet...and possibly count your teeth.

The late Alan Bond – tarnished Australian treasure, visionary entrepeneur, criminal fraudster par excellence. We may not see his like again in this more worldly age. And if you do, check your wallet…and possibly count your teeth.

Amongst the commentary and hyperbole filling the airwaves though, the element that most intrigued me was the widely reported ‘denial’ of a state funeral for Bond. To be fair, this was never a serious proposal instigated by political authority of any sort, so far as I could determine – but a substantial sector of the national media seemed to grab hold of the idea from somewhere and present it as if it should have been taken seriously – as if he was somehow an exemplar – a national treasure to be held up and emulated by all Australians.

To fully appreciate the Bond story, you need to think back to the heady exbuerance of the 1980s. The deregulation of the Hawke-Keating years in Australia heralded a new era in finance and banking in the formerly sleepy and somewhat conservative markets of this Great Southern Land. Foreign banks moved in like dubious relatives after a lottery win, flooding the nation with cash. Money was not so much easy as full-on sexually aggressive, with bankers knocking on the door of any two-man outfit with an ABN, begging businessmen to borrow more. And boy, was Bond happy to oblige.

In an era of little financial transparency and minimal disclosure rules, Bond and his trusted lieutenants worked the system with verve and exuberance, shaking up the Australian business world with a series of audacious mergers and takeovers…and not coincidentally paying themselves massive personal success fees every time they notched up a deal.

And therein lay the secret to Bond’s success – a fortune built around the classic swindler’s trick (or investment banking fund management strategy, depending on which side of the financial divide you fall) of creaming off massive fees from his shareholders for every deal – good or bad. They might lose their shirts or win big from his market betting, but Bond always made sure to secure his own skin, whatever the outcome.

Even that wasn’t enough for Bond though, and when the great speculative bubble inevitably burst in 1987, he was caught out shuffling, borrowing, and outright stealing millions from the companies across his empire to keep the good times rolling. Bond’s personal holding company eventually collapsed owing more than half a billion dollars, and Bond reached something of a personal nadir by declaring himself bankrupt in 1992 with debts of $600 million…although having a trusted and well-paid accountant at his disposal, this development didn’t seem to impact on his lifestyle or personal comfort to any great degree. By all accounts Bond’s personal business dealings with Switzerland involved a lot more than clocks and chocolate.

Above and beyond the usual chicanery and bastardry of high finance though, Bond was also convicted three times on serious criminal fraud charges (one of which, admittedly, was overturned on appeal) – including the capping majesty of stealing $1.2 billion from Bell Resources, really putting him in a class of his own when it comes to Australian crime. If you’ve ever tried to negotiate with someone from this wide and sunburnt land and wondered why “my word is my Bond” doesn’t cut much ice – the record of the good Alan is probably your explanation.

And that’s really where my curiosity over Australia’s continued bimodal views on Bond starts from too. Okay, in the excesses of the 80s when a whole generation of conservative middle-class culture seemed to catch up with the entrepreneurial vibe in a rush and Alan Bond was the largest and flashiest of the showmen who seemed to be standing on every street corner producing endless streams of money out of the air, the average investor could be forgiven for taking a punt on Mr Showmanship. After all, he seemed to be capturing the zeitgeist of the era – and a shed load (a boat shed, as it turned out) of money along with it.

But post the 1987 stock market crash and corruption scandals? Post the fraud convictions ($1.2 billion of other people’s money, let’s remember – that’s ‘billion’, with a B) and the sheer ludicrous front of the “sorry, I’m brain damaged and can’t remember anything” defence?

Yes, unbelievably in my book, when Bond came out of prison and re-launched himself on the world looking to wring a fortune out of the now-booming minerals sector (presumably his opening patter was along the lines “Brain damage is much better thanks – now let me tell you about these diamond mines in Africa” ) there were people willing to invest money with him again. I mean…what?

It seemed a selective amnesia surrounded Bond like a fog – people could remember he had made himself incredibly wealthy, but somehow forgotten that he did it by making ludicrously risky bets in the business world with lots of other people’s money – salting away the windfall and stiffing his investors with a shiny toad-like grin when the market turned. This has all the intellectual merit of asking the Pied Piper of Hamlin to babysit because you remember something about him being good with kids.

Basically, Alan Bond succeeded and thrived – and cemented himself a place in the Australian psyche – because we want to believe. We simply want to believe. Especially at our most vulnerable, when we need a miracle to appear, we are desperate to believe. Our own internal narrator says it should – it’s the most classic of plot lines, after all. In act two it all goes wrong for the hero – the battle seems lost, your true love’s plane is missing, your puppy has cancer. Then act three dawns – boom – the cavalry arrives, everything turns out for the best, and you ride off into the sunset.

We all get ludicrous phishing spam clogging our email in trays – and I know your first thought as you hit delete is probably “Why do they bother with this? Surely everybody must be able to see straight through this transparent drivel?”

And yet, according to a recent report from Ultrascan AGI (admittedly not a disinterested source, given they are in the business of Open Source Criminal Network disruption), losses from Nigerian 419 Advance Fee Fraud (prosaically named for section 419 of the Nigerian criminal code dealing with fraud) totaled $12.7 billion worldwide in 2013. That’s a figure to draw a blush from even the Cheshire Cat-like visage of our Mr Bond.

What makes outwardly sensible and often well educated people part with their money to these seemingly obvious scams? Well, while I can’t exactly say I’ve been in that position myself, I have been close enough to peek through the door and see the magic kingdom on the other side. In the weeks after being told I had become a luxury my current employer couldn’t afford, while working through the accompanying grieving process of anger and frustration – wondering how the mortgage was going to get paid and where my next loaf of bread was coming from (okay, I was still planning on it being artisanal hand made bread – but a guy’s got to have standards, right?), those emails actually started to look pretty good on some levels.

I was still a couple of weeks of serious sleep deprivation, serotonin imbalance and (I’d like to think) a lobotomy away from “yippee, it came true – here’s my bank account and IBAN code” – but those mystery benefactors, previously unknown deceased relatives, and Iraqi generals burdened with over-full bank accounts they wanted help with gave me a momentary frisson of hope when they arrived – not belief as such, but a tiny spark of ‘wouldn’t that solve everything?’ that had me looking forward to them.

There are a lot of people out there at any point in time in desperate, desperate trouble. There’s presumably a subset of those people so emotionally or physically drained that they’re unhinged enough to believe, maybe just for a second, in the salvation narrative. And that’s all the spammer needs – the lucky happenstance of having that 10,000th email hit the inbox of someone ready to believe in miracles.

It’s not just criminal fraud that relies on these principles. People don’t buy lotto tickets because they support opera, or sports gear for kids, or any of the myriad of borderline welfare programmes funded by the state lottery organization.

Nor, I would venture, do most people buy them with any serious expectation they will win. We buy them for the story we sell ourselves – the moment of “mmmm…but wouldn’t it be nice” fantasy. At the risk of outing myself as an irretrievable nerd (or more worryingly, as lacking imagination) by using a Star Trek metaphor for the second post in a row – charismatic risk-taking Captain James T. Kirk would buy a ticket without a second thought (indeed, Chris Pine’s devil-may-care Kirk from the rebooted film series would probably expect to win). Spock would calculate the odds, realize that, statistically speaking, the expected return on investment was so low as to be indistinguishable from zero, and raise a quizzical half-alien eyebrow over these strange human foibles. I get that. Most of the time I pass on the lotto ticket myself and buy lunch instead…but if the jackpot is over $10 million, the fantasy is big and bold enough for me and I’ll happily put my money down.

To quote the late Terry Pratchett, our species should be labelled not as Homo sapiens – thinking man – but rather Pan narrans – the storytelling ape. Man is not, after all, the only animal to think (any owner of a cat can tell you the little deviants are continually plotting evil deeds of varying magnitude) – but we are unique in our ability to tell stories – to imagine life could be different than the way it is.

This truth – this brilliant point of difference at the root of our success as a species – also lies at the heart of every fraud ever committed. The secret of the successful grifter, after all, is not to fool a mark – but rather to give them the opportunity to fool themselves.

That back door vulnerability in the mental fortress of the human psyche has been exploited throughout history – Alan Bond is far from the first inveterate rogue to achieve popular fame and love from a public who should really know better.

The framing character in Peter Carey’s “True History of the Kelly Gang” (yes, I know this is a work of historical fiction – but it’s a great yarn, and if you’ve got this far I assume you can appreciate that I’m a sucker for powerful narrative drive) is school teacher Thomas Curnow. Curnow brings about the fabled bandit’s ultimate undoing, slipping away from Glenrowan to warn authorities of Kelly’s plot to ambush the police train, but in later years relates his bitterness that it is the criminal bushranger Ned who the public remember and revere.

Likewise in Andrew Dominik’s 2007 drama ‘The Assassination of Jesse James by the Coward Robert Ford’ – it’s outlaw James the contemporary public eulogise, not Ford – who ultimately suffers the stereotypical gunslinger’s death, shot down by yet another violent misfit seeking notoriety.

And lets not forget – Bilbo Baggins made no attempt to track down the actual owner of that ring he found in the goblin tunnel, so Golum was quite within his rights to feel legally aggrieved about the blatant theft by appropriation.

We all root for the underdog at heart. Ultimately, it’s the understandable natural tendency of the human mind to favour the interesting character, the rough diamond. What we can learn from the misplaced lionization of Alan Bond though is that alongside that internal narrative humming as a backbeat to our thoughts, we shouldn’t lose sight of that other great human power – logic.

Fool me once, shame on you – fool me twice, shame on me.

Of Cats and Cashflow: Human sentimentality and the flaw in economic rationalism

Last Christmas, I paid $5000 for a cat.

$5000.

For a cat.

“Cat” here, in case you should be wondering, is not the title of an avant garde piece of sculpture by some breaking new artist, or a colloquial reference to a rare wine or other exclusive gift for a loved one. Nor indeed, anything special in the feline department.

Just an ordinary cat that my 9 year old daughter had saved her pocket money to rescue from the Animal Shelter. Yes, okay, it’s accepted family lore that he is actually a pedigree animal who somehow found himself down on his luck on kitty skid row – but I can accept there may be a degree of parental self-delusion in that particular idea.

Whatever his back story though, as the warm summer evenings of 2013 began to lengthen, heralding the winding down of business and arrival of the holiday season, all thoughts of casual beachside barbecues and Christmas relaxation were rudely dashed for me one Saturday morning as young Pedro – having manfully picked a fight with a passing car – dragged his sorry frame into the house and collapsed theatrically in the middle of the living room floor.

After a quick cat scan at the local veterinary hospital (no, not a moment of levity playing on my feline friend’s biological order there – a real actual honest-to-goodness “cash up front please sir” CAT scan cat scan) showed up the incontrovertible evidence of a clean and comprehensive break right through the young street fighter’s pelvis, the therapeutic choices came to a quick fork in the road. One path led to major surgery, emptying of savings accounts (“kids – hands up who’s going to University. Not so fast there you two”), and having a half-shaved grumpy convalescing cat locked in a cage in our cosy house through the warmest weeks of summer. The other, to a quiet, calm, fully funded holiday season. Even a couple of weeks of really nice vacation. As well as the sticky point of explaining to my daughter why her precious kitty wouldn’t be joining us for Christmas dinner.

The path we chose (and I say “we” here entirely in the blame-shifting and shared responsibility sense – my wife’s version of this story may differ on the precise extent to which each of us couldn’t stomach the tough decision making) probably tells you everything you need to know about why I’m never likely to make the annual list of Australia’s 10 hardest hearts. And why you shouldn’t take my advice on anything to do with finance.

The point is, this doesn’t qualify as an investment decision. It’s not like I had some brilliant plan to parlay this $5000 outlay into a major stream of retirement income. Even if the cat in question is possessed of the kind of dashing good looks that could make him a major star in pet food commercials…if he could at some point stop trying to take a chunk out of any hand with the temerity to pat him without explicit permission.

No, it just turns out that little tiny titanium screws are really expensive. If you want them put somewhere useful by a veterinary surgeon, anyway.

The much pampered and perhaps overly tolerated Pedro - a few lives down from his initial quota of 9 perhaps, but still going strong as an extended metaphor for social relativism. And definitely not just a shameless attempt to elevate my viewing stats through use of a cute cat picture.

The much pampered and perhaps overly tolerated Pedro – a few lives down from his initial quota of 9, but still going strong as an extended metaphor for social relativism. And definitely not just a shameless attempt to elevate my viewing stats through use of a cute cat picture.

And there, laid bare for the world to see, lies the fundamental flaw with economic rationalism. People are not reliably rational actors on the world stage – we all bring our personal values, idiosyncrasies and biases to economic decision making.

For those of you who might not be fully familiar with the concept, economic rationalism (market liberalism, for readers from outside Australia) is the dogmatic view that markets and money can always do everything better than governments, bureaucracies and the law.

In the more prosaic words of Michael Pusey – Professor of Sociology at the University of New South Wales: “Forget about history and forget about national identity, culture and ‘society’…Don’t even think about public policy, national goals or nation-building. It’s all futile. Just get out of the way and let prices and market forces deliver their own economically rational solution.”

This philosophy underpinned a sharp step to the right across much of the Western political sphere in the 1980s and 90s – think the Hawke-Keating-Howard years in Australia, Thatcherism and its correlatives in Europe – and has more recently been used as the basis for a strict balance sheet approach to management in many areas of wider society – education, housing, the arts, even environmental policy.

This deference to accounting undeniably has a certain elegance to it – a simple coherent narrative that can easily be painted on a placard, or broadcast in a 6 second sound bite. Like Creationism re-packaged for a political audience though (and with many of the same elements of true belief and ideological fervor), the sneaky trick here is that while this is dressed up as analytical economics, really it is all about political philosophy – the ideology of unfettered personal freedom. Don’t get me wrong – it is entirely proper for economic rationalists (or anybody else) to allow value judgments about freedom to define their policy prescriptions. It is improper and, more importantly, incorrect, however, to claim that these ideas flow simply from the laws of economics, and possess some sort of inescapable mathematical truth.

The beauty of mathematics, of course – the reason political and social movements have long sought to co-opt it to their crusades – is that it gives defined, absolute solutions. Put your numbers into an equation, and you get an answer at the end. To as many significant figures as you like. This allows us to do amazing things – like build giant flying machines from aluminium and carbon fibre that can carry hundreds of passengers around the world in a matter of hours. Or land a spacecraft on the surface of Comet 67P/Churyumov-Gerasimenko hurtling through space 510 million kilometres from Earth.

Real world problems though – especially anything touched by the inordinate complexity of human social psychology – commonly fail to lend themselves to mathematical solution. The real world simply has too many possibilities and undefined variables – such that equations have no solid foundations they can be anchored to.

To make problems tractable – to allow mathematics to give us that pure, crystalline answer – we usually make certain assumptions to tie down the open ended possibilities and give us a solvable domain to work within. The danger here though is of ending up with what the great 20th Century physicist and public champion of science Richard Feynman used to call a spherical cow argument (readers of my earlier posting on University fees “More Pennies for Your Thoughts” will have seen a longer explanation of this concept) – an assumption that, while making your equation solvable, also removes any meaningful relationship to the physical system it purports to represent – and when that happens the clean precision of a mathematical solution can be misleading. Or worse.

The NASA engineers plotting the journey of the Mars Climate Orbiter to the Red Planet in 1999 produced incredibly precise solutions. They also assumed the output of one of the key pieces of navigation software on the Orbiter was in metric Newtons of force…when it was actually in pounds of thrust. Oops. This rendered their solutions elegant, precise…and dead wrong, with the $USD 125 million satellite coming in too close to the planet and breaking up in the Martian atmosphere.

Perhaps more than such elementary cases of error, however, the important thing to grasp in a social context is that you can use framing assumptions to distort the result in any direction you might desire. Want to argue against the opening of a new coal mine? Include some cost assumptions about externalities like atmospheric pollution, environmental risk, and increased traffic to show the economics don’t stack up. Or as I showed in an earlier blog, want to argue in favour of higher University fees? Make some helpful assumptions about the financial advantage accruing to a graduate while discounting the societal benefits and increased tax revenue from a more educated population.

Even in the best of circumstances though – if we assume (at the risk of vanishing into the never ending hall of mirrors that is self-referential logic) all our assumptions are correct and appropriate – the critical point to remember is that economics cannot tell you what is the right choice. Morality and values do not drop out of financial equations like wisdom paying out from a philosophical poker machine. Any investment decision comes down to a balance of short term sacrifice against long term gain. Instead of spending your money on something now, you invest it in the expectation of gaining greater reward at some future point.

When it comes to quantifying outcomes – basic economics – that can be a pretty straightforward calculation. “If I have $1000 now, would it be better to stuff it in my mattress or invest it in government bonds for 10 years”. Okay, there are still some assumptions to make about yields and the potential of unexpected events like your significant other throwing your mattress in a skip while you’re at work. Or a plunge in the commodity price on which a government had based all its economic projections, driving it to default on its debts (Hmmmmm…so how is the iron ore market going, by the way?)

By and large though, you can produce a pretty robust solution to that kind of question and say which one is likely to give you the higher return over a 10 year period.

Defining what the sensible decision is based on those results though – now there’s the challenge – with a crack arising in the logic around defining how great a long-term premium is required to make the short term sacrifice worthwhile.

Let’s say that Mike believes that the pleasure he derives from eating a custard slice is an appropriate trade for the 30 seconds it might shave off his life (or the hour in the gym it will take to work off all that delicious vanilla flavoured excess), whereas Susan doesn’t think the momentary pleasure of the creamy mouthful is worth the sacrifice. Who is right? Both are, of course. It’s a question of values and opinion, it has no absolute solution – no single true answer that trumps or invalidates all others.

Orthodox economics is very clear that policy recommendations must rest on both economic analysis AND a set of values. There is no objective adamantine economic ‘truth’ – the social implications of financial modeling depend on your personal beliefs and values.

Even Milton Friedman – often held up as the philosophical father of Economic Rationalism – understood this qualification, stating:

“As Liberals, we take freedom of the individual, or perhaps the family, as our ultimate goal in judging social arrangements.”

No special pleadings or claims of incontrovertible quantitative support there – Friedman is perfectly comfortable acknowledging that his social policy ideas (a fountainhead that fed both Reagan and Thatcher in their glory days of social engineering and reform, let us remember) are based on an ideology. And that’s fine. On that basis, you can assess and debate his arguments, and decide for yourself whether that’s the model you would like to see underpinning the society you live in. Friedman, unlike the hardline Economic Rationalists who have followed in his intellectual wake, allows that alternative social models may be equally valid if you don’t happen to share his values.

Like, for example, valuing a deeply ungrateful cat (and the happiness of a small child) more than a new sofa or a week in Paris.

And hey – at the end of the day, even if we were all perfectly rational actors making our life decisions on the basis of pure logic and mathematics, that might not actually be the lasting social panacea the Economic Rationalists hope for. You’ve seen what happens to the planet Vulcan in J. J. Abrams’ 2009 Star Trek re-boot, right?

All for one, and none for all: Is educational choice the best choice for society?

“The solution to the problems in our education system would be to make private schools illegal and assign every child to a [state] school by random lottery”

Warren Buffett – US Billionaire investor and philanthropist

The fact that this advocacy of educational collectivism comes not from Hugo Chavez or the Chinese Communist Party, but rather the “Sage of Omaha” himself – doyenne of the economic rationalists, Warren Buffett – amply demonstrates the complexity of this debate. Buffett is no closet communist – his argument comes straight from the core of macroeconomic theory, and in particular his longstanding advocacy for equality of opportunity and social mobility – key elements for a healthy and efficient capitalist market. Private schools, Buffett argues, act as a barrier to both.

Fundamentally, he would have you believe, the fact that a minority of wealthy families can choose to opt out of the state sector and send their children to expensive and elite private schools has a negative impact on the overall education of the vast majority of students whose families cannot afford to do the same.

Education is one of the most transformative and socially liberating forces in Western culture. Is it right then to allow some citizens to buy access to a different - possibly superior - education system? Or would society be better served by common experience and opportunity?

Education is one of the most transformative and socially liberating forces in Western culture. Is it right then to allow some citizens to buy access to a different – possibly superior – education system? Or would society be better served by common experience and opportunity?

Many people support this stance in theory…often right up until it comes to their own children’s education – the common refrain ringing out around Western Suburbs dinner tables being “Yes, but we really didn’t have any choice but to go private.”

“She’s not a hypocrite, she just put what I wanted first, instead of what people thought.”

James Thomson – defending his Mother’s decision to send him to private school.

Elevating this statement above standard familial tribulations, Thomson’s mother is no mere middle class matriarch, but long time British Labour MP for the socially deprived inner London constituency of Hackney North and Stoke Newington, Diane Abbott.

The division between supporters and opponents of comprehensive state education is particularly stark in Britain, where this debate is a long established battle line in the larger divide of class and culture at the heart of the national psyche.

Prior to her decision to send James to the £10,000 per year City of London School, Abbott – a charismatic figure sitting well to the political left of her party – was an outspoken advocate for the State Schooling system and comprehensive education. Not surprisingly then, her apparent Damascene conversion, abruptly switching sides on this ideologically laden ground in 1993, drew a particularly vitriolic response. Attacked by her colleagues, excoriated by both the left wing press – for her class betrayal – and the right wing press for her political hypocrisy, and – probably most painfully of all – calmly (if smugly) supported in her decision to ‘exercise personal choice’ by her political opponents in the Conservative party, Abbott’s decision saw her brought low by hubris – and probably ended her ambitions to lead the Labour Party.

She must have known this reaction was inevitable – particularly given her earlier open criticism of other senior party figures – including Tony Blair and Harriet Harman – for sending their children to selective state schools – and yet she claims it was the only decision she could have made. “I was taught that you sacrifice everything for your child” said Abbott in defending her position. “That school was the making of him”.

Diane Abbott - UK Labour MP for Hackney North and Stoke Newington since 1987. First Afro-Carribean woman elected to parliament in the UK, single mother, free thinker, strident advocate for human rights, one-time contender for the party leadership. Do her education choices reveal feet of clay, or should we be more wary of passing judgement?

Diane Abbott – UK Labour MP for Hackney North and Stoke Newington since 1987. First Afro-Carribean woman elected to parliament in the UK, single mother, free thinker, strident advocate for human rights, one-time contender for the party leadership. Do her education choices reveal feet of clay, or should we be more wary of passing judgement?

So who’s right – Buffett or Abbott? Are private schools a route to realizing the full potential of our children, or a parasitic drain on the educational framework of a nation? Or am I just pulling an old debater’s sleight of hand by setting out a false dichotomy to drive the narrative along?

In answering those questions, the first step is to evaluate just what educational advantage accrues from private schooling. However you slice exam results, it’s hard to argue with the numbers that show private schools (and their cousins in Australia, the independent Catholic school system) outperform state schools in direct terms. Private schools have topped the overall Western Australian Certificate of Education (WACE) standings in my home state for 6 of the past 7 years – with the only exception being the elite Perth Modern school in 2012 – which although government-run is entirely selective of its student intake on the basis of a competitive entry exam.

Like many elementary correlations, however, this comparative success conceals deeper statistical truth beneath its seductive surface. State and independent schools can’t really be directly compared, as the two tap different student markets. Academically motivated students from stable middle class backgrounds are not equally distributed between the two…and at the other end of the scale, nor are disruptive kids with family histories of inter-generational unemployment.

Can family background make such a difference? Studies in the UK have long replicated a curious result that strikes to the core of this division. The most significant predictor of success in the education system there is apparently parents wanting to send their children to private school . The interesting point for me being that the key word in that phrase is the second one – wanting. Adjusted for socio-economic status, there is actually no significant additional impact in following through on this desire – it is the mere fact of wanting to send your child to private school that accounts for the positive impacts.

What? So Noel Edmonds is right and Cosmic Ordering actually works? Well, no – but wouldn’t that be a fabulously ironic outcome? No – back to the correlation trap – wanting to send your children to a Private (which in the minds of many, we must remember, is synonymous with ‘better’) school is an indicator of prioritizing education and being prepared to make sacrifices (in the form of substantial fees, or the location in which you choose to live) for your children’s education. And there is the rub – engaged parents who care about education and actively support their children’s learning tend to produce better educational outcomes. These are households where kids are brought up to think of education as important. Where parents know when their children’s exams are and go to the trouble of finding out how they went. Where Mum and Dad want to discuss essay plans and metaphors for duplicity in Othello when their offspring would much rather be googling ‘LOL cats’ and messaging their friends on Snapchat. Where parents say things like “let’s have a screen free day and all take turns finding poems to read aloud.”

As you can tell, weekends in the rockysubjects household are a real blast – I can’t imagine why my teenage daughter keeps hiding in her bedroom with her iPad.

The point being, these are kids who were always destined to do well academically and benefit from schooling. And they would do so in ANY school they attended. The crux of Buffett’s argument is that by creaming many of these aspirational youngsters off (self selecting) into a private schooling system we impoverish the state system of the dynamism, energy, and behavioural modeling such students (and families) could bring to many school communities.

Got a sink school with failing exam performance and no resources for extracurricular activities? Send 50 kids from pushy middle class families parented by well connected professionals and under-employed highly educated stay-at-home mums and dads, and see how long that state of affairs lasts.

On the other side of the coin too, this strips much of the luster from the nominally superior performance of independent schools. Creaming off a higher-tracking, better prepared cadre of students and lavishing them with resources and opportunity, it would be an indictment worthy of shame if private schools did NOT top the league tables year-on-year.

Viewed in this light, the value proposition of this ‘elite’ educational system is far from obvious.

Indeed, according to analysis by the Australian Council for Educational Research (ACER) of the results from standardized international tests, once adjustments have been made for variations in socio-economic status, there is actually NO significant difference in mean scores between government, independent and Catholic schools.

“Holy real estate pricing index Batman!” I hear the middle class collectively respond. “You mean all those thousands of dollars I’m spending on Brett and Chardonay’s school fees aren’t actually doing anything?”

Well, not exactly – and here is where things get interesting (and a bit morally ambiguous from a sociological point of view) – because while no distinction shows up in these universal international tests of scholastic ability, there is a significant difference in the results of the country-specific Australian Tertiary Admission Ranks (ATAR) examination system. Research published in 2009 by analyst Gary Marks found that socio-economic background adjusted results in this key national examination system were eight percentile ranks higher for students from independent schools and four higher for those at Catholic schools when compared to students educated in the government system.

That’s a heck of an advantage – and to go back to Warren Buffett’s ideas, represents a gross inefficiency in our education system. In essence, combine Marks’ findings with the ACER analysis and what we see is that private schooling isn’t producing brighter kids or enabling greater intellectual development, but it is preparing them better for the specific ‘game’ of the national examination system. Think of the comparative results here as the equivalent of a polo match. Even if both teams are equally athletic, if only one has had pony riding lessons, the outcome is not likely to be in doubt. And as long as we judge student achievement – and access to resources such as higher education (and jobs) – on the basis of this sort of examination system, that distinction is what your school fees are buying.

Of course, this is all just abstract pontification on educational theory, right? After all, there’s no way we could ever test this model out by taking on the entrenched system of elite privilege by redistributing students and educational resources across society is there?

Ah – not so fast my laissez faire friend.

When Michael Palin, as a member of the ground-breaking surrealist comedy group Monty Python, sang in 1980 of “Finland, Finland, Finland – a country where I quite want to be” his intention was comic irony – singling out a country possessing few redeeming features – “a poor second to Belgium when going abroad” as Palin’s lyrics put it – to laud in his song of wistful desire. The true (unintended) irony though turned out to be that, in educational terms, he was actually onto something.

Pedagogical literature abounds with laudatory tales and critiques of the Finnish ‘education miracle’ – with a regular trail of international observers and eager apostles to rival El Camino de Santiago beating a path to the door of the Finnish education ministry on fact finding missions. And like many pilgrimages, a deal of myth has grown up around this miracle to convince any unbelievers – so it does pay to approach this subject with a critical eye. Even when you strip away the hyperbole though, there is an undeniable success story there to be appreciated.

Prior to 1970, Finland was not ‘languishing at the bottom of the OECD education rankings’ as some commentators would suggest – if for no other reason than no such league table then existed, with the OECD Programme for International Student Assessment (PISA) first undertaken in 2000. Nor though was the country likely to appear on anybody’s list of the world’s most outstanding education systems – simply operating a typical European hybrid model of mixed state, selective, and private schools and educators, all doing their best to guide their student charges through their formative years.

In fertile conditions provided by the homogenous Finnish culture and strong social democratic traditions however, the progressive social movements of the 1960s gained a particularly dominant position within the country, and after searching analysis, a radical plan was put into action to wipe away the messy panoply of mixed providers, creating a new basic education system built around common comprehensive schooling – with ‘quality for all’ the watchword.

Gone were the private schools – no more exclusive education of the wealthy elite. Gone too the sorting of pupils by ‘ability’ and with it the self segregation of the middle class and differential resourcing of schools. A true democratization of education then, with all in the same boat. Crucially, we should also add that this ‘boat’ was made thoroughly seaworthy – with education funding a national priority, and teachers well remunerated and elevated to a position of significant social cachet.

Such changes were passionately opposed in some quarters, with entrenched interests – particularly in the erstwhile elitist private school sector – campaigning long and vociferously in parliamentary and public forums against the educational re-engineering. Unlike in many corners of Europe, however, the social progressives in Finland were able to hold their ground as the radical movements of the 60s declined – defending the need for their experiment to run its course.

And the result? Educational anarchy? A wasted generation of students unable to fulfill their potential? Spiraling descent into a dark age of reduced international competitiveness? Umm….no. In fact, internal debate on the Finnish educational model essentially died a natural death with publication of the first PISA rankings in 2000, in which the nation was found to sit atop the international order – a position that has remained more or less consistent ever since.

Further remarkable strength hides behind these headline figures too. According to one OECD report “No other country has so little variation in outcomes between schools, and the gap within schools between the top and bottom-achieving students is extraordinarily modest as well. Finnish schools seem to serve all students well, regardless of family background or socio-economic status.”

Heady stuff then. Particularly if you believe in the socially transformative potential of education.

And yet, just when you thought I’d nailed my intellectual thesis to the doors of the Cathedral, I have to muddy the waters again by telling you that I’m 100% behind Abbott in her decision to send her son to private school. Okay, maybe 85% since she, perhaps understandably, flinched in the full glare of media criticism and failed to display the courage of her convictions by explaining and defending her position in public – but that still has her walking away with a clear A grade (at least under Australian marking criteria).

This apparent cognitive dissonance though is not so hypocritical as the Sun and Mirror newspapers might suggest through the banner headlines they used to pillory Abbott’s schooling choices. I genuinely believe – as, I suspect, does she – that universal comprehensive education is the best thing for society. But it has to be an all or nothing proposition. The “Full Finnish”, if you will. If an avenue exists to offer some students a better – a more valuable, however you wish to judge that – experience (and in the less socially progressive Anglophone West I can’t see Eton or Sydney Grammar running up the white flag and joining the collective any time soon) well-meaning parents will inevitably be drawn to that opportunity – even though it is not the best thing for society as a whole.

And who can blame them? Certainly, as my wife and I sit here weighing up education choices for our youngest daughter, I would be reluctant to cast the first stone.

Undercover Operatives: Inadequate Lighting and the Mineral Discovery Landscape in Australia

Underneath the lamplight... How do we re-frame the process of scientific enquiry (and in particular, mineral exploration) to focus on the areas of greatest potential discovery, rather than the easiest places to look?

Underneath the lamplight…
How do we re-frame the process of scientific enquiry (and in particular, mineral exploration) to focus on the areas of greatest potential discovery, rather than the easiest places to look?

A policeman walking the beat on a dark night sees a man down on his hands and knees searching for something under a streetlight.

“Excuse me sir,” he says – helpful servant of the public that he is “what seems to be the problem?”

“Hello oshi…offi…officer,” replies the man – obviously a little the worse for a night of drinking – “I…I appear to have lost my keys”

The kind-hearted policeman lends a hand, and the two spend a few minutes scouring the ground to no effect, before the policeman asks “Are you sure this is where you lost them?”

“Nonono” replies the drunk “Didn’t lost them here oshifer – I lost them across the road.”

“Then why are you looking here?”

“The light’s better.”

Ba-doom tssch, as my daughter would say – echoing the classic cabaret drum-and-cymbals punctuation to an obvious punchline.

Forms of this particular parable though – variously termed ‘the streetlight effect’ or ‘the drunkard’s search’ – have been codified in Social Science theory since at least the 1960s, and there is at least one version circulating on the web as a thoroughly creditable “Nasreddin story” (a traditional middle eastern form of ‘wise fool’ tale, supposedly based on 13th century populist philosopher Nasreddin Hoca, in which moral or pedagogical points are illuminated with pithy folk wisdom) – pointing to some useful philosophical bones beneath its vaudevillian exterior.

The crux of the tale here is to illustrate the logical trap of focusing our investigative effort in the areas where it is easiest to make observations, rather than those that hold the greatest potential for discovery. This moral holds particular relevance for the business of mineral exploration as the national discussion in Australia turns to how to find the resource wealth that will sustain the industry through the 21st century and beyond.

The fundamental challenge of future mineral exploration is one of simple calculus: the depletion rate of many resources globally – the speed with which industrialised society is extracting existing mineral endowment from the ground to feed the needs of urban development and increasing living standards around the world – is outstripping the rate at which new deposits are being discovered. Addressing this growing problem efficiently calls for diversity in the style and geography of exploration efforts, balancing the potential for mineral discovery against the associated technical and social risks. For all the mineral exploration opportunities to be found in places like Sub-Saharan Africa or Central Asia, for example, the Sovereign risk attendant on their political and economic history mean that it would be a brave (or perhaps foolhardy) company who would invest all their eggs in such a basket – and nominally well-explored but stable jurisdictions such as Australia also have an important part to play in this solution.

Despite the intellectual and social capital invested in the mining industry in this country however, the all-important balance of risk and reward has been seen as tipping away from Australia as an exploration domain of choice in recent years.

Exploration expenditure nationally – the dollars poured into identifying and characterizing mineral deposits – has risen dramatically over the past decade. In part, this just reflects the expected upswing of a periodic cycle of investment – one more dizzying rise in a bi-polar industrial history of boom and bust stretching back to the earliest days of European colonisation – albeit with highs and lows increasing in magnitude through the latter half of the 20th century. More worryingly, this decade of enhanced spending has not been accompanied by a corresponding rise in discoveries. Quite the reverse – even allowing for a degree of time lag in the full size and value of discoveries being realized, the 10 years to 2010 actually saw fewer mineral discoveries in Australia than any equivalent period over the past 40 years. In real terms, it follows that the cost of discoveries has risen sharply – squeezed in a pincer of increased outlay and decreased success rates (Fig. 1).

Five year rolling average of Australian mineral resource discovery costs, 1975-2010 – excluding bulk minerals. Reproduced from compilation graph presented by Richard Schodde, MinEx Consulting. Costs are normalized to 2009 $AUD. ‘Moderate’ resource size denotes in excess of 100koz Au, 10kt Ni, 100kt Cu equivalent, or 5 kt U3O8. ‘Major’ resource size denotes in excess of 1Moz Au, 100kt Ni, 1Mt Cu equivalent, or 25 kt U3O8. ‘Giant’ resource size denotes in excess of 6Moz Au, 1Mt Ni, 5Mt Cu equivalent, or 125 kt U3O8. Data sourced from ABS and MinEx Consulting, August 2010.

Figure 1: Five year rolling average of Australian mineral resource discovery costs, 1975-2010 – excluding bulk minerals. Reproduced from compilation graph presented by Richard Schodde, MinEx Consulting. Costs are normalized to 2009 $AUD. ‘Moderate’ resource size denotes in excess of 100koz Au, 10kt Ni, 100kt Cu equivalent, or 5 kt U3O8. ‘Major’ resource size denotes in excess of 1Moz Au, 100kt Ni, 1Mt Cu equivalent, or 25 kt U3O8. ‘Giant’ resource size denotes in excess of 6Moz Au, 1Mt Ni, 5Mt Cu equivalent, or 125 kt U3O8. Data sourced from ABS and MinEx Consulting, August 2010.

To some degree, these statistics may be skewed by the lack of game-changing ‘Super Giant’ discoveries in the country over this period – the Olympic Dam and Mt Isa systems of the geological world, whose massive scale and rich grades of mineralisation place them in world-leading positions. Such spectacular concentrations of mineral endowment are surpassingly rare, but their concentrated bulk can so dominate the resource landscape that they account for a substantial share of the market – and profitability – of the mining industry. Looking in more depth at the results however (Fig. 2), we can see this appeal is misplaced – persistently high relative costs exist across all scales of deposit in Australia, with discoveries in this country significantly more expensive than most other areas of the world over the past decade. Welcome though it might be to the group lucky (or fore-sighted) enough to peg the ground, discovery of another Oyu Tolgoi – the ‘world class’ gold resource currently giving expectant parent Rio Tinto such political and economic labour pains with its troubled birthing process in Mongolia – in the Neoproterozoic rocks of the Paterson orogen would do little to change this fundamental landscape.

Cumulative number and size distribution of primary gold discoveries (excluding satellite deposits) per $US billion spent on exploration, 2001-2010. Figures compiled by MinEX Consulting, November 2011. Reproduced with permission.

Figure 2: Cumulative number and size distribution of primary gold discoveries (excluding satellite deposits) per $US billion spent on exploration, 2001-2010. Figures compiled by MinEX Consulting, November 2011. Reproduced with permission.

This value equation contributes to a pervasive view of exploration maturity in the Australian landscape – a perceived depletion of the residual search space. This has its positive side – such is our knowledge of exposed geological character across this wide brown land that it might reasonably be hoped the mature and well-informed exploration industry would no longer be so credulous as to swallow Harold Bell Lasseter’s fraudulent Depression-era tales of quartz reefs exposed in Australia’s rugged interior, awaiting discovery with their illusory “nuggets as thick as plums in a pudding.”

With this familiarity though, comes a matching degree of contempt – with the industry – or at least the financial markets – increasingly of a view that there are no more Telfer deposits or Kambalda nickel camps sitting around at the surface waiting to be stumbled across. “All the ground” it is said “has been walked” – all the rocks kicked by the boots of keen-eyed prospectors – with much of the formerly energetic Australian exploration industry seeing greater opportunities overseas in less thoroughly examined terrain.

But how valid is this pessimistic outlook? The vast majority of the Australian landscape – up to 80% by some estimates – is essentially un- (or certainly under-) explored for minerals – with the ancient Archean and Proterozoic rocks that have proven so richly endowed around the country masked by extensive blankets of regolith and younger cover sequences that have discouraged previous generations of explorers.

It is not that these covered domains are barren. Indeed, two of the most celebrated exploration successes in the past decade (the Tropicana gold resource and the company-making De Grusa copper discovery – about which, more below) were made under cover – and in areas widely perceived to be over-mature for exploration. The resources exist then…but to make their discovery and exploitation practical on a routine basis, we need a way to lower the risk involved in exploration. For all its heroic resonance, we shouldn’t simply rely on the storied Margaret Hawke effect.

For those unfamiliar with this dramatic masterpiece of recent industrial theatre, back in the winter of 2009 Hawke was a junior exploration geologist at Sandfire Resources. In fact, to give a perhaps more accurate view of the landscape, with her employer – as were so many junior mining companies at the time – savaged by the Global Financial Crisis like a child’s toy shaken by a maltreated Pitbull (I won’t quite go the full Shakespearian “Winter of our discontent” route…but times were certainly tough for the industry) Hawke, one of the last 3 employees left on the shrinking company payroll, was pretty close to being the entire exploration team at Sandfire. At the end of an otherwise unsuccessful exploration campaign, and with the company about to up-stakes and leave the field to lick their wounds, she took the bold initiative (some tellings of the tale might describe it as inexperienced presumption – but given the spectacular success of the play, we really have to respect the form of the heroic narrative) of signing off on a final drill hole without the approval of her absent boss. The spectacular copper, gold, and zinc mineralisation intersected in that last roll of the dice literally saved the company.

For every De Grusa jackpot though, there are likely a dozen ‘last rolls of the dice’ (and inexperienced presumptions) where the end result is the brass name plate of another failed small-cap mining company being quietly unscrewed from an office building in West Perth. These tales are less well reported though – with few participants keen to broadcast their failure from the rooftops.

Luck – perhaps not always of the spectacular form enjoyed by Sandfire in 2009 – will inevitably play a role in any discovery, with the true craft of a good explorationist like Hawke being to make sure you’re in the right place and looking in the right direction when your numbers come up. The question then is how do we use our luck more effectively in exploring for mineral systems beneath the blanketing rock?

Tools do exist to peer beneath this cover – an arsenal of geophysical methods to distinguish varying rock characteristics beneath the surface, geochemical approaches to resolve the cryptic fingerprints of a buried mineral system – and these tools have been widely applied across the exploration industry since the middle decades of the 20th century – with some noted success stories. The broad limitations of such techniques to date are made clear, however, in the statistics that show us that 50% of significant Australian mineral discoveries over the past 60 years were less than 15m beneath the surface, and only 10% under more than 200m of covering rock, truly in the realm blind to surface discovery (Fig. 3) – and those largely in the so-called brownfields environment, beneath or in immediate proximity to other known mineral deposits.

Geographical distribution and depth of Australian mineral discoveries –excluding bulk commodities - in relation to estimated cover thickness. Data sourced from MinExConsulting (August 2010) and Geoscience Australia. Reproduced with permission of Richard Schodde, MinEx Consulting.

Figure 3: Geographical distribution and depth of Australian mineral discoveries –excluding bulk commodities – in relation to estimated cover thickness. Data sourced from MinExConsulting (August 2010) and Geoscience Australia. Reproduced with permission of Richard Schodde, MinEx Consulting.

We can illuminate this search space then, but our efforts to date have in essence provided only a fitful firelight that can show us little more than shadows on the walls of the cave.

This limitation is widely appreciated – and extensive geoscience research and exploration targeting efforts have long been directed at improving our resolution and understanding of these faint signals – mindful certainly of the tremendous competitive advantage that any breakthrough may offer.

Instead of focusing on this narrow question of how to better detect mineralisation, however, perhaps we should be turning our attention to the critical decision making involved in targeting our drill rigs and sampling programmes in the first place. Before baiting your hook, after all, it is a good idea to address the question of whether there are any fish around. Or even any water.

This is the philosophy underpinning the Mineral Systems approach to exploration targeting – where rather than the traditional (and, to give its due, previously highly successful) methodology of characterizing an individual mineral deposit and seeking to replicate its discovery, exploration search space is instead defined by application of a rigorous conceptual model of how mineral endowment is concentrated within geological systems – incorporating understanding of the physical and chemical processes of ore fluid generation and metal solution, mobility and deposition across a range of scales. This approach focuses the explorer on mappable expressions of high quality mineralisation at the scale appropriate to the exploration decision – be that global, regional, or local. The process may not by itself identify the telltale signs of mineralisation, but the holistic view enhances the efficiency with which promising targets can be identified – and equally importantly, rapidly rules out search space where the geological fundamentals don’t line up – offering significant efficiencies to the exploration process.

Emeritus Professor David Groves – respected scientific researcher and former President of the Geological Society of Australia – articulates this concept through analogy to real estate. A rational person wouldn’t choose which house to buy on the basis of the bathroom fittings alone. No – the first thing you consider – so early in the piece that it might not usually even be thought of as a conscious choice – is the country you want to buy in. Then the state or city, then the suburb, then maybe even the street. Only at this stage would you concern yourself over which particular property to consider investing in, and it’s individual details and attractions.

It ultimately matters little how palatial the residence and impressive the swimming pool if the house is in rural Tasmania and your primary motivation is actually living close to a good school in Paris.

The power of such a holistic approach is amply demonstrated by the remarkable recent success of the petroleum exploration industry, where this style of systems-based prospectivity analysis was adopted some 30 or more years ago. It may seem hard to credit from a modern computationally intense scientific perspective – but many of the major discoveries made during the pioneering era of 20th Century petroleum exploration (think here of the Elysium fields of Texas, California, and even Saudi Arabia) were in no small part down to boots-on-the-ground prospectors recognising signs of oil and gas seeping out of the geological strata and probing for the source with an exploratory well – “I drink your milkshake”, in the evocative words of robber baron oil tycoon Daniel Plainview (an Oscar winning performance from Daniel Day Lewis) in 2007’s “There Will be Blood”.

In a classic model of needs-driven innovation, saturation coverage of accessible terrain during the later 20th century – the end of the golden age – forced the industry to change – driving exploration deeper, and making it increasingly more technologically focused and expensive to pursue. Today rather than combing the backwoods, Beverly Hillbillies style, for “a-bubbling crude”, serious exploration takes place on the back of comprehensive geological and geophysical evaluation of sedimentary basin histories and predictive modeling of petroleum evolution and migration, carried out to identify prospective search domains and provide the confidence required for the multi-million-dollar investment decision to mobilize a drill rig and sink an exploratory hole.

Okay, no more swaggering heroes and rugged individualists to lionize in cinematic tributes – no-one’s going to remake the 1943 John Wayne vehicle “War of the Wildcats” updated for the modern era as “Co-operative Joint Venture of the Balanced Risk Portfolio Exploration Drillers” any time soon – but the industry as a whole has been incredibly successful in meeting global resource needs over this period of change. And turning a more than tidy profit.

Rather than putting in more streetlamps then, the better solution to the dark frontier of mineral exploration under cover may be to follow the example of the petroleum industry here and think more carefully about where we aim the light sources we already have.

Delusions of Inadequacy: A review of Curtis White’s ‘The Science Delusion’

In the opening scenes of Mel Brooks’ classic 1974 Western parody Blazing Saddles, Burton Gilliam’s racist overseer Lyle demands that his black railroad labourers perform “a good ol’ nigger work song”. When the obliging work gang, led by Cleavon Little’s Bart, burst into an elegant a cappella version of Cole Porter’s ‘I get a kick out of you’, Lyle stops them, and he and his cowboy colleagues show them what a ‘real’ negro song is supposed to be like, with a spirited rendition of ‘De Camptown Ladies’ – complete with minstrel dancing and derogatory mispronunciation – while the black labourers look on dumbfounded, unable to relate to the racist caricature played out before them.

The stereotyping skewered so effectively in this scene bears close parallels to the views presented by Curtis White in his book ‘The Science Delusion’.

White’s stated aim is to critically examine the ‘privileged place’ of science in secular western society. His thesis though is built around a definition of ‘science’ that I fail to recognize, and a crude caricature of the scientist – a cold, detached savant unable to appreciate human emotions or true beauty – that seems to have been based largely on watching re-runs of Big Bang Theory.

Bart and his fellow convicts responding to overseer Lyle's entreaty: “Now come on boys, where's your spirit? I don't hear no singin'. When you were slaves, you sang like birds. Go on. How 'bout a good ole nigger work song?” Still image taken from Mel Brooks' 1974 comedy "Blazing Saddles".

Bart and his fellow railroad labourers responding to overseer Lyle’s entreaty: “Now come on boys, where’s your spirit? I don’t hear no singin’. When you were slaves, you sang like birds. Go on. How ’bout a good ole nigger work song?”
Still image taken from Mel Brooks’ 1974 comedy “Blazing Saddles”.

At the heart of White’s failed analysis lies the equation of science with a moral and political philosophy. It isn’t enough that science produces new ideas and insights to inspire discussion – White wants to be told what to think about them, complaining that science doesn’t inform us how to judge its discoveries. “Far too many scientists”, he writes, “leave the ethical meaning of their work to people bereft of moral imagination”.

But as any serious student of science could tell you, White is tilting at windmills of his own imagination here. Science is nothing more nor less than an ordered way of assessing problems and testing ideas – a systematic approach to problem solving and self criticism. It is explicitly not a code of Bushido by which to live.

At the heart of White’s critique though is not a dislike of science itself – indeed, as becomes apparent in the later chapters of his work, White actually both understands the nature of the scientific method, and appreciates the beauty to be found in science through the challenge it poses to the existing order. Rather, the over-riding narrative is one of visceral disrespect for the practitioners of science, expressed through sweeping generalizations that if you replaced the word ‘scientists’ with ‘Asians’ might have him suspended from the faculty at Illinois State University. It got to the point where I kept expecting arguments to be prefaced by a paraphrasing of the old vituperative racist’s standby: “Don’t get me wrong – some of my best friends are scientists, but…”

It is not that White’s criticisms are entirely without merit – indeed, many of his individual targets are well chosen. Richard Dawkins and the late Christopher Hitchens can, as White pointedly observes, be overbearing and un-necessarily dogmatic in their commentary. Likewise, Sebastian Seung and others in the public vanguard of neuroscience do often lapse across the dividing line between science communication and science fiction. And yes, I’m comfortable conceding White’s point that many scientists – even very good ones – are probably mediocre to appalling poets, falling at the first hurdle when trying to use evocative language and imagery to capture the beauty and nuance of their work.

At the same time though, I don’t get a sense that White is looking to establish a level playing field in these regards – there is certainly no indication he would expect a poet writing on the nature of life and the universe to have a firm grasp of virology or particle physics.

Such uneven treatment is a notable and distracting element throughout the text. White calls to Tom Waits lyrics, pop culture movies, and novels as sources of rhetorical strength in his own writing, but would deny his antagonists any written form not as formally codified and structured as the 19th century German philosphical treatises he is so fond of.

White is also quick to point out sloppy structure and inadequate definition of terms in the writing of those he seeks to criticize…but then takes equal liberties himself, and all too readily forgives the linguistic sins of those whose work he would co-opt to his purposes. He takes umbrage, for example, with Jim Watkins’ description of humans as ‘products’ of evolution – suggesting with a sniff of derision that such terminology places us on a par with the output of some cosmic factory conveyor belt. A virtually identical linguistic allusion, however – the world being a ‘product’ of the self in Schelling’s philosophical arguments – is then later adopted by White himself without comment.

Such uneven handling might be forgivable in an undergraduate thesis, but White is a career wordsmith – a novelist, essayist, and academic. He obviously cares about, and has considerable mastery of, the English language – continually waving the flag for well-structured and elegant communication throughout this book – so such double standards are at best sloppy, and at worst self-serving hypocrisy.

With his fundamental thesis stretched painfully thin and his narrative structure riddled with such inconsistencies, White frequently over-reaches in seeking to generalize his individual criticisms to a comprehensive attack on the essence of science – as where he argues that because a scientist (specifically in this instance, neuroscientist Seung) has produced a bad philosophical argument, science cannot relate to philosophy or art. The logical corollary of this is that if Salman Rushdie burns the toast, writing can have no relationship to cooking.

If scientific writers and commentators have failed to appreciate the artistic and sociological implications of their ideas – and rest assured, many have – it is because of their personal inadequacies, not because of anything to do with the nature of science. There is no ‘Science Pope’ sitting on a throne issuing encyclicals about how scientists should relate to other ideas and viewpoints.

When he writes that Christopher Hitchens “reduces religion to a series of criminal anecdotes…[ignoring] virtually all of the real history of religious thought, as well as historical and textual scholarship”, White himself willfully overlooks the contextual framing of Hitchens’ writing. Hitchens is not offering up this critique of religion de novo, but as a deliberate counterpoint to the historically promulgated view that we should think only of the positive philosophical and sociological functions of religion, and ignore the darker side of its use as a justification for war, social injustice, and other abuses.

Hitchens and Dawkins are not writing to engage with the enlightened philosophers and thinkers of the world. The two are the bulldogs of the humanist viewpoint deliberately setting out to take on and worry the one eyed commentators expounding conservative religious polemics and attempting to dominate the cultural airwaves. Rather than taking the moral high ground by constructing an artful, comprehensive and syntactically complete thesis and sitting back to watch it be ignored or misrepresented by their opponents, they plunge in with the rhetoric of broad engagement – taking on their intellectual opponents in hand-to-hand combat.

I might not approve of everything Dawkins says, but I am grateful for his occupation of this position. Dawkins is the Charles Bronson of scientific writers – an enforcer out there brawling in the street to control the baying mob so the rest of us can get on with our work.

By far the most distracting of White’s narrative straw men though is his placement of words into the mouths of his intellectual sparring partners to make them into obvious cartoonish buffoons, so that he can then ride to the rhetorical rescue with a devastating rejoinder. Yes, I know the Socratic dialogue (an imagined discussion with a naive or foolish companion) is a valid and effective rhetorical device with a long and rich history in Philosophy – one I appeal to myself on occasion. I’m just not sure that Socrates ever used the approach to so transparently belittle his contemporaries or score cheap personal points. Fundamentally, to paraphrase US Senator Lloyd Bensen in his 1988 Vice-presidential debate smack-down of Dan Quayle: Professor White, you’re no Socrates.

Putting foolish words into the mouth of your opponent does not enhance your own intellectual credibility. Reproduced from Bill Waterson’s Calvin and Hobbes cartoon strip, originally published January 18th, 1987.

Putting foolish words into the mouth of your opponent does not enhance your own intellectual credibility. Reproduced from Bill Waterson’s Calvin and Hobbes cartoon strip, originally published January 18th, 1987.

Behind the claims to an intellectual high ground, White’s true motivation perhaps emerges as something closer to sour grapes in a series of unguarded comments around the demarcation he sees between science and what he would stake out as his own home ground – art and literature.

He criticises Hitchens’ “privileged position on the New York Times best-seller list” as if this was some hereditary title Hitchens had unfairly usurped from its rightful holder, and complains of science “being given every kind of opportunity to make its case to the public, including high-tech presentations and best selling books”, while philosophers sit unread and unremarked upon on unvisited library shelves. White seems to imagine there are an endless array of publishers and TV commissioning editors beating down the door of theoretical physicists desperate for new books on their work and its relationship to the fabric of reality. In the real world though, I’m afraid that if Schelling and his fellow academic philosophers can’t get their own TV series, its not because those nasty scientists have formed a cabal to dominate the Western cultural conversation and black listed them.

In seeking to establish the boundaries between the qualities of art and science, White speaks of transcendence – but his framing of the term is deeply flawed. His juxtaposition of Beethoven with the industrial design team at Proctor and Gamble is manifestly ludicrous (although not as over the top as his analogy of the company motto “GE: Imagination at work” with the historically laden Nazi concentration camp slogan “arbeit macht frei”). Under such a framing we might equally compare Isaac Newton with George Formby to establish (with apologies to fans of “When I’m Cleaning Windows”) a countervailing majestry of science over art.

If ‘art’ is the common factor, White would lump together the good, bad and indifferent – Beethoven, Picasso, and Hitchcock with internet memes and LOL cats. It is actually the transcendence of genius of which his examples speak, and I would be far more generous than White in my attribution of this to other fields. Contrary to his criticism, there is unquestionably a form of genius in convincing an already overweight, well-fed consumer that they really want to eat a hamburger right now. Or in convincing an intelligent human being to take up a habit like smoking when they know it will shorten and decrease the quality of their life. Yes, it may be an evil genius…but genius, none the less.

White’s view ultimately comes across as narrowly bourgeois – creation is only worthwhile if it occurs in the critical space occupied by he and his coterie. Things that touch, move, or inspire the masses are worthless. We (I would happily include myself among White’s great unwashed masses) are not even allowed to appreciate and value art unless it’s for the reasons he wants us to. According to White the ‘wrong’ view of art “is the assumption now even of arts councils and, as far as I know, the artists they fund.”

The artists they fund? Did I mention the odour of sour grapes?

Wow. So now its not just the scientists, but a conspiracy running right to the heart of the all-powerful arts council Illuminati! Did White have Dan Brown ghost write this chapter?

With presumably unintended irony, the nature of what I would define as science is actually not far removed from White’s phrasing of Schiller’s definition of art: “It refuses the world as something already determined…[offering] a welcoming openness to change”.

I find myself suspecting that a much more positive contribution to public discourse could have been laid on this foundation, but if White’s fundamental drive is to encourage active thought and challenging of ideas in society, this book has probably done a good job of alienating a substantial slice of his potential constituency – namely those critical thinkers who would describe themselves as scientists.

Therein lies the tragedy of this work – I know I’m not White’s target audience…but I could have been. There are many areas in which I have some sympathy with White. I share his appreciation for the Romantic spirit – with the best art (like the best science) to be found in the overturning of paradigms, and the challenging of comfortable authorities.

And when he can rise above the vitriol and histrionics, he’s a good writer – even with a pleasingly dry sense of humour. Anyone who can skewer his opponent’s philosophical knowledge with the pithy “Dawkins knows sweet nothing about Foucault” has my utmost respect. Yes, this does rely on a mispronunciation of Foucault, but I imagine you’re there well ahead of me on this one.

Part of me even thinks it might well be enjoyable to share a bottle of good wine with White and talk about his ideas…but in the face of his espoused views on scientists, I fear this might be a bit like Louis Armstrong sitting down for a chat with Benito Mussolini – a big fan of jazz music according to his son Romano, but otherwise unlikely to have much common ground with the great African-American musician.

At the end of all the analysis I find myself left, disappointingly, as Bart – the hero of Blazing Saddles – looking on bemused from the sideline as White crow dances and sings his minstrel song of science – ultimately showing more about his own biased views than offering any kind of serious analysis.

Dry Humour: Washing down the bitter pill of water security

Water, water every where

Nor any drop to drink

“The Rime of the Ancient Mariner” – Samuel Taylor Coleridge

Have you ever drunk fresh water? I mean truly pristine – untouched by the biological footprint of others.

Perhaps. I guess you could do it if you are a technophile with a hydrogen fuel cell in the back garden that you tap to make your morning coffee. The rest of us live in a gloriously messy organic world where water is continually cycled and recycled through biological processes.

The reservoirs and dams that supply our cities are not hermetically sealed plastic tanks – but lakes and rivers with living, functioning ecosystems of microbes, invertebrates, fish, birds – and all that goes along with that.

And more.

When you press flush, I know it’s good to imagine that the contents of the bowl are vaporized or spirited away – lord knows I’ve experienced plumbing emergencies where I’ve wished I could have magically made the returning materials vanish by clicking my heels and saying ‘there’s no place like home’. No such luck – our effluvia may vanish from sight, but they remain an issue to be dealt with – and ultimately return to the environment. And the waterways.

“Because it went into a river,” says Australian National Water Commissioner Chris Davis speaking in the Sydney Morning Herald “people conveniently forget where it started and no one really seems to mind”

This mental dissociation of our water supplies from nature is not a new phenomenon – the brilliantly witty, if alcoholically challenged, W. C. Fields knew he was mining a rich vein of societal insecurity when he quipped: “I never drink water; fish fuck in it”

Mmmm...cool refreshing water. Wait a minute, has this had fish in it?

Mmmm…cool refreshing water. Wait a minute, has this had fish in it?

When I was growing up, the idea of buying a bottle with nothing in it but water would have been laughable – to be written off as a modernistic retelling of The Emperor’s New Clothes, or an undergraduate performance art project attempting a subversively ironic comment on consumer society. Today, PET bottles of cool clear water are a ubiquitous element of our cultural landscape – from the supermarket to the multiplex, and all stops in between.

In 2008, Australians consumed approximately 600 million litres of bottled water, spending over $500 million for the privilege, and accounting for the use of an even million barrels of oil in the manufacture, storage, transport, and refrigeration of all those – for the most part disposable – bottles.

This displays something of a curious disconnection with circumstance in a country where clean healthy water supplies piped to the home are a government mandated right. Indeed, a substantial proportion of the bottled water industry in this country consists of multinational corporations bottling our municipal water supply and selling it back to us at a massive premium. Seriously, stand up and take a bow, Coke and Pepsi – your marketing genius at the very least should be applauded.

At least we aren’t alone in this fixation. Zong Qinghou, one of the richest men in the economic powerhouse that is modern China owes his fortune to bottled water. His brand name – ‘Wahaha’ – even sounds like the maniacal laugh of a Bond villain. In light of the debated environmental footprint of the industry, either the man has an admirable appreciation of dramatic irony, or he needs to seriously look at whoever handles his global brand management.

Even out of a heat sealed plastic bottle though, to pretend that what you are drinking is untouched by the complexities of leaking, pumping, squelching biology would be laughable were it not so pervasive a force.

The recycling of water has been brought close to home in public debate recently with the news that Western Australia will soon become the first state in the country to put post-human recycled water into our drinking water supplies, not haphazardly by gradual percolation and leakage, or indirectly through release into the oceans and rivers, but directly, deliberately, and after comprehensive physical and chemical processing to render it safe and potable.

Journalistically, the Murdoch-dominated national press has largely taken a negative editorial stance on this issue. Whenever recycled potable water stories come up in The Australian or The Sunday Times, the term consistently used to describe the water is ‘recycled sewage’ conjuring images of turbid brown water and sulfurous odours. The ‘yuck factor’.

Learning from recent public policy failures in this area in the eastern states, however, the Liberal government are short-circuiting the ability of the popular press to agitate against the policy (and, not coincidentally, engender debate and boost newspaper sales), ruling out public consultation and pushing ahead on the basis of drought-proofing the state. After the success of a three-year trial in which waste water was treated to Australian drinking water standards and injected into an isolated suburban aquifer without incident, the government is signing off on a plan to recharge Perth’s groundwater systems with up to 35 billion litres of treated sewage per year – enough to supply the current needs of around 140,000 households.

Such initiatives look set to become a core element of future water security plans around the nation in coming years, with the Australian Federal Government providing $20 million of funding to prime the pumps, as it were, of the Australian Water Recycling Centre of Excellence.

Underlying such strategies and the massive engineering feats they entail at the State level are the findings of the Western Australian Government’s ‘Water Forever’ report into long term sustainability of potable water. In the face of a trinity of declining rainfall, decreasing groundwater yields, and increasing population, this study forecast an annual deficit of 120 Gigalitres by 2030, blowing out to a massive 265 Gigalitres by 2060.

Looking at those figures, you either bury your head in the sand (and hope it’s the free-flowing, well sorted, highly permeable sand of a previously untapped aquifer), or you face up to the reality that the water we use so liberally actually has to come from somewhere – and if Premier Colin Barnett’s earlier and much slated vision (to call it a pipe dream is really too cheap a metaphorical shot to even bother with) of a canal to carry water down from the Kimberley region in the more hydraulically endowed north of the state is a non-starter, there are only so many other options.

Desalination? Highly energy intensive unfortunately – and what do we do with all the extremely saline brines produced? All that salt still has to go somewhere, after all. What’s that you say? The Perth Desalination plant uses green energy? Hmmm…only if you believe accounting can save the world. Although the Western Australia Water Corporation proudly trumpets electricity for the plant being generated by the Emu Downs Wind Farm in the state’s Midwest, the relationship is really only an indirect one of power use offsetting – with the Kwinana plant actually plugged directly into the State grid to guarantee base load supply. Kind of what you’d want for a critical piece of infrastructure, to be fair – but not the clean green closed circuit you might expect from Water Corporation press kits. More desalination would inevitably mean an increased load on the power infrastructure of the state already stressed by industrial and population growth forecasts.

What about the old standby of co-opting natural systems to supply our cities? Again, regrettably that well is already dry – with the state Economic Regulation Authority recognising that all divertable surface water resources in the Perth region had been tapped by 2004, and groundwater production by some estimates already exceeds long term recharge capacity.

So what are our options outside the planned water recycling scheme?

Curiously, the simplest solution – to my mind the obvious one – of reducing water use and increasing efficiency struggles to gain traction in this debate. This principle of moderation is, to give the Water Corporation their due, one of the planks in their vision of water security, but seems to resonate with no-one…possibly because it touches the hot button issue of asking us to as a society exert some self control and pull our heads in, instead of catering to rapacious consumer desire like an insecure step-parent trying to buy our affection ahead of a family court hearing.

Fundamentally Australia is not actually that short of water.

We just do stupid things with it.

The worrying shortfalls forecast in the ‘Water Forever’ report assume business as usual…with Australians using an average of 70,000 litres of water per person annually – the highest consumption of any nation on Earth. Hang on to that idea for a second and swirl it around the bowl one more time – we Australians, with a national psyche rooted in sunburnt desert landscapes and an inveterate fondness for trumpeting our credentials as occupants of the driest inhabited continent on Earth, piss away (literally and figuratively) more of this precious resource than anybody else on the planet.

It’s not too hard to see where a lot of that water goes. For anyone not familiar with the lovely city of Perth (for which, I should add, that annual consumption figure climbs to a jaw-dropping 106 kilolitres per person), the metropolitan area includes a lot more verdant green lawn and swimming pools than you might expect for a dry Mediterranean climate.

In essence, we still suffer the cultural hangover of trying to recreate an English idyll in a landscape singularly unsuited to it – and it would be career suicide for a politician of any stripe to suggest cutting back on any of the well watered sports fields that dot the suburbs.

Lawn sprinklers keeping Perth's verdant green municipal carpet healthy all year round - really the best use of our limited resources?

Lawn sprinklers keeping Perth’s verdant green municipal carpet healthy all year round – really the best use of our limited resources?

If we reduce this over-consumption to a more moderate level though – say the Dutch average of 55,000 litres per person – or better yet the French 40,000 – the problem goes away for the forseeable future. Okay, for anyone who’s ever been in the Paris metro when the wind is blowing the wrong direction, there are still some potential downsides to that scenario – but we’re not talking about converting to the lifestyle of Bedouin nomads here.

At the end of the day, there really is no such thing as a free lunch – even if, like a catwalk model going through a period of low self esteem, all you order is water. With a Malthusian resource ceiling looming, current trends of water consumption in Australia – profligate Western Australia in particular – clearly cannot continue into the future. All that remains is for us to decide which version of our medicine is the least bitter.

At a fundamental level the range of solutions to this resource ‘crisis’ are probably no different to those of any of the other maladies of over consumption afflicting our society in the 21st century. We can take the engineering pathway – working more overtime to pay for the diet pills and exercise machines we know we’ll never really use properly…or we can just collectively put down the cake fork and get off the couch.

A Nice Glass of Montepulciano: Risk, Lies, and Politics in the L’Aquila Earthquake

“the scientific community tells me there is no danger, because there is an ongoing discharge of energy. The situation looks favourable”.

Bernardo De Bernardinis, dismissing the risk of a major earthquake at L’Aquila on March 31, 2009…5 days before 309 people died in a magnitude 6.3 earthquake in the city.

De Bernardinis – together with senior Italian scientists Enzo Boschi, Giulio Selvaggi, Franco Barberi, Claudio Eva, Mauro Dolce, and Gian Michele Calvi – ultimately had cause to regret the flippancy he displayed in this press conference. As has been widely reported the seven, then members of the Italian National Commission for the Forecast and Prevention of Major Risks, were found guilty of manslaughter in an ensuing trial and sentenced to 6 years in prison.

That outcome is still under appeal, but this case and its ramifications continue to reverberate through the world of science.

Like many the world over, I was stunned and outraged by the verdict in October last year (see my original blog post Fairy Tales on Shaky Ground – Scientific understanding and the Italian court system – WordPress 25/10/2012). That original response though was not a proud moment in my record as a researcher and analyst. My rush to public pronouncement before I had gathered the full facts of the case could almost have come straight from the 2GB talk radio playbook.

Having had cause to look further into the trial and its participants over the ensuing months, while I wouldn’t exactly say I’ve undergone a Damascene conversion, I have come to appreciate that this case is more nuanced and complex than I had originally assumed…and a much more compelling tale for that.

To dismiss a red herring up front: this was never about earthquake prediction. The seven were not prosecuted – as many commentators in the English-speaking press initially suggested – for failing to forecast the earthquake, or for neglecting to advise the evacuation of the city. Rather, the case was brought for undermining public safety by providing – in the words of Fabio Picuti, the public prosecutor in the case – “inaccurate, incomplete, and contradictory information” about the dangers of seismic activity occurring in L’Aquila in the weeks leading up to April 2009.

The L’Aquila earthquake was no bolt from the blue. As we can see in this map, L’Aquila lies at the heart of one of the zones of highest seismic risk in the tectonically active Italian peninsula – and as I noted in my earlier blog, the city has been devastated by earthquakes on no fewer than 7 recorded historical occasions, dating back to 1315.

Earthquake Hazard Map for the Italian Peninsula, showing the peak ground acceleration with a 10% probability of being exceeded in 50 years. For reference, a ground acceleration of 0.001g is perceptible by people, at 0.02g people can lose their balance, and at 0.1g light property damage can be expected. Produced by the Italian National Institute of Geophysics and Volcanology, 2005.

Earthquake Hazard Map for the Italian Peninsula, showing the peak ground acceleration with a 10% probability of being exceeded in 50 years. For reference, a ground acceleration of 0.001g is perceptible by a careful observer, at 0.02g people can lose their balance, and at 0.1g light property damage can be expected. Produced by the Italian National Institute of Geophysics and Volcanology, 2005.

In the face of this record, it’s no wonder that public concern was high when a series of significant seismic tremors were felt in the city during the spring of 2009. This concern was further sharpened by the pronouncements – widely condemned in the scientific community – of laboratory technician Giampaolo Giuliani, who attracted wide publicity with his claims that variations in radon gas levels indicated an imminent large earthquake in the area.

Against this climate of public anxiety, the seven members of the National Commission for the Forecast and Prevention of Major Risks – the L’Aquila Seven, as they have become widely labelled – were given the task of evaluating the risk these tremors represented, and duly met in the tense and shaky city on March 31st, 2009.

According to Giulio Selvaggi – a member of that ill-starred seven, and director of the Italian National Earthquake Centre – the scientific consensus expressed at the meeting was anything but reassuring. “If you live in L’Aquila, even if there’s no swarm [of earthquakes],” Selvaggi is on record as saying, “you can never say, ‘No problem.’ You can never say that in a high-risk region.” Notably, Selvaggi’s claim of appropriate caution and respect for uncertainty among the scientists on the panel is supported by the official minutes of the proceedings.

So how did this message of watchful preparedness become De Bernardinis’ dismissive ‘the scientists say don’t worry your pretty little heads about it’?

Therein turns the tale.

You’d struggle to suspend disbelief if this turned up in a Dan Brown pot boiler, but the narrative gods smile upon us here. It turns out that De Bernardinis’ then boss – Guido Bertolaso, Director of the Italian Civil Defense committee – was having his phone tapped by the police at the time this episode was unfolding (due to unrelated ongoing corruption investigations…ah, Italy, land of simple honest folk and open government).

In setting up the Commission meeting with L’Aquila town councilor Daniela Stati, Bertolaso was recorded as saying:

“So they, the best seismology experts, will say: “This is normal, these phenomena happen. It is better to have 100 level 4 Richter scale tremors rather than nothing. Because 100 tremors are useful for dispersing energy, so there will never be the dangerous quake. Do you understand?”

Remember, this is the day before the Commission meeting in L’Aquila.

Sound familiar? It should – that’s pretty much point for point the story De Bernardinis offered at the post-meeting press conference – as quoted in the introduction to this post.

Warming to his ‘keep calm and carry on’ message, when asked by a journalist at that press conference if the public should sit back and enjoy a glass of wine rather than worry about earthquakes, De Bernardinis famously replied: “Absolutely, absolutely, a Montepulciano” – playing to the gallery in favouring that deep-hued rustic red from the local Abruzzo region.

“Absolutely, absolutely, a Montepulciano” – words that came back to haunt spokesman Bernardo De Bernardinis.

De Bernardinis has subsequently claimed that he was merely trying to summarise the view of the scientists at the meeting – but his erstwhile colleagues dispute this strongly. There is no mention of the ‘seismic discharge’ idea in the official minutes, and Boschi, Selvaggi and the other indicted scientists stated unequivocally during the trial that De Bernardinis was making remarks along these lines before the Commission proceedings even got underway.

The balance of evidence then would appear to indicate that those scientifically invalid, overly reassuring comments were essentially a scripted message De Bernardinis had been sent along with by his political master – with the meeting laid out as nothing more than an elaborate public relations event to dismiss the concerns of the local residents.

Indeed, as a PR exercise, the initial press conference was an unqualified success…and it is to that ‘success’ that the L’Aquila Seven owe their subsequent prosecution. To quote Simona Giannangeli, a lawyer representing 8 bereaved families in the court case:

“You could almost hear a sigh of relief go through the town. It was repeated almost like a mantra: the more tremors, the less danger.”

Calming mantra it may have been. Sadly, it was also fatally inaccurate. Minor tremors do not pre-sage a significant earthquake in any meaningful way…but nor do they lessen the risk as De Bernardinis had implied.

That fateful statement was ultimately costly for many, with the trial judge recognising ‘a direct causal link’ between those comforting pronouncements on behalf of the Commission and the deaths of 29 victims – largely residents who are reported to have forgone, expressly on the basis of the Commission’s reassurances, their traditional precautionary response of sleeping outdoors, or hurrying outside at the first sign of a tremor.

De Bernardinis looks pretty bad in all this – as does his former boss Bertolaso, who many commentators have suggested should have joined the seven men in the dock. What of the other six though – the scientific members of the Commission. Are they just blameless dupes, unfairly ensnared by the machinations of a Machiavellian public servant?

Where my view has changed on this point is that now, regrettably, I think not.

Don’t get me wrong here – I don’t for a moment consider that culpability for manslaughter is something that can reasonably be laid at their door – Selvaggi and his colleagues were just one link in a long chain of causation and negligence leading to the many tragic outcomes in this episode. Where the snow-white credibility of the group starts to drift though is that these were not just 6 scientists meeting in the cafe over a glass of wine (Montepulciano or not) to discuss the situation. This was a legally constituted committee of experts, convened in L’Aquila by the Italian government specifically to address not just the seismic risk itself, but public perceptions of that risk.

Franco Barberi, a volcanologist at the University of Rome and the Commission’s then-vice-president, stood alongside De Bernardinis at that March press conference. He could have turned to his colleague and said – in impeccably stylish Italian phrasing of course – “Whoa up there Bernardo, which meeting were you just at, ‘cos that’s not what we were saying.”

Okay though, let’s give Barberi a free pass on that one for now – anyone can be ambushed, caught off-balance in the glare of the spotlight, after all. But Barberi and the other members of the committee then had every opportunity to think over De Bernardinis’ widely reported comments in the following days – to see how they were being presented by the media, and the effect they were having on public opinion and actions. If they felt that the statements were inaccurate or inappropriate, they could have made their feelings known and corrected the apparent mis-representations for the benefit of the people of L’Aquila.

None of them did.

Any of the 6 scientists could have, at any point in the next 5 days, put out a press release saying “actually, that stuff that’s being reported in the papers, that’s (a) scientifically inaccurate, and (b) not a reflection of what we concluded at the meeting” or – and this is the important one – “remember, earthquakes can’t be reliably predicted, and L’Aquila is in a zone of high seismic risk – all residents should take whatever precautions they feel are appropriate any time they are concerned about tremors”. That’s all it would have taken.

But they didn’t.

Instead the 309 victims of the L’Aquila earthquake went to their graves that April night believing that the falsely comforting words offered by De Bernardinis at the press conference carried the imprimatur of Selvaggi and the other scientists on the committee.

Here is where the fault lies for the scientists. Their willingness to abrogate responsibility for the discussion of seismic risk and scientific uncertainty to De Bernardinis – the one non-scientist on the Commission panel that March evening, let’s not forget – is like the Chief Financial Officer of a major corporation handing off the presentation of the accounts to the head of public relations.

While our metaphorical PR executive should, we would hope, be competent in their own field, they may lack the expertise and authority to speak for the financial state of the company…and worse they could well – as De Bernardinis clearly did – have their own agenda to push. If things then go all GFC and the company’s financial report turns out to have been an artful construction of smoke and mirrors, the responsibility ultimately comes back to the CFO for their inappropriate delegation and dereliction of duty. If you’re the one who lets ‘the smartest guys in the room’ get away with it, you ultimately have to share the fall out – just ask David Duncan, former Lead Partner for the Enron account at the (equally former) Arthur Andersen accounting firm.

Perhaps the final word though should go to public prosecutor Fabio Picuti:

“I’m not crazy. I know they can’t predict earthquakes. The basis of the charges is not that they didn’t predict the earthquake. As functionaries of the state, they had certain duties imposed by law: to evaluate and characterize the risks that were present in L’Aquila. They were obligated to evaluate the degree of risk given all these factors, and they did not.”

Sticky Fingers: Changing Old Noise to New Data in the Course of Scientific Discovery

“I suppose you won’t be able to find one of your famous Clues on the thing?”

“Shouldn’t think so, sir. Not with all these fingerprints on it.”

Terry Pratchett, “Feet of Clay”

Captured in Pratchett’s satirical writing here is a key concept underpinning the advancement of science: In recognising the deficiencies of our understanding, we identify pathways to more fundamental, deeper insight.

If you might indulge me in illustrating this concept: The science of geochronology is only a little over a hundred years old. The genesis of this field – the direct measurement of the age of Earth materials in the millions and even billions of years, putting a timescale to the grinding wheels of geological process – is probably traceable most directly to the New Zealander (albeit that we should add the prefix ‘Colonial’ to that label, given he undertook his post-graduate education and scientific career at Cambridge University in Britain) Ernest Rutherford – one of the great figures of 19th and early 20th century physics. Scientists don’t often ascend to the pantheon of cultural heroes, so the fact that Rutherford’s distinguished portrait graces the $50 note of his country of birth is probably as effective a mark as any of the degree to which he bestrode the world stage, and the respect in which he is still held.

With his finger on the scientific pulse of the Edwardian age – and in particular the atomic theory at the heart of his own cutting-edge research – Rutherford was quick to appreciate the significance of the new phenomenon of radioactivity discovered by his contemporaries Marie and Pierre Curie. In the words of the great man himself:

“The helium observed in the radioactive minerals is almost certainly due to its production from the radium and other radioactive substances contained therein. If the rate of production of helium from known weights of the different radioelements were experimentally known, it should thus be possible to determine the interval required for the production of the amount of helium observed in radioactive minerals, or, in other words, to determine the age of the mineral.”

Ernest Rutherford – Silliman Lectures at Yale, 1905

With those words, a scientific revolution began.

Rutherford quickly set to work encouraging collaborators in the fields of chemistry, physics, and geology to put that principle into practice, but it didn’t take long for the community to recognise that his original elegant concept wasn’t going to be the simple path to greater knowledge that they had hoped for. The problem was that helium – the simple, easily extracted product of radioactive alpha decay – wasn’t fully retained in the mineral structures they were testing. In the words of John Strutt, one of the key figures in this early research:

“[helium ages provide only] minimum values, because helium leaks out from the mineral, to what extent it is impossible to say.”

R. J. Strutt (1910), Proceedings of the Royal Society of London

Some process – unknown at the time – was allowing the helium to escape from the crystals. Like a water clock with a leak in it then, there was no true fundamental way to calculate age from the system.

The key to our story here is that the contemporary paradigm to which these scientists were working was that the only age that mattered was the time at which a sample crystallised – nothing else entered their world view. When helium dating returned values that were clearly far too young and inconsistent to reflect such formation ages, the method was consequently abandoned, with the scientific community pursuing other isotopic systems – notably the pairing of uranium isotopes with their ultimate stable decay product of lead – as the pathway to temporal understanding of Earth evolution.

90 years later at the turn of the 21st century though, helium dating was back on the scene and a hot property (quite literally, as it turns out – but more of that later) in the field of geochronology – and it remains so right up to the present day. Why? Have we just forgotten the lessons of the past?

To understand the answer to that question, you need to appreciate that an isotopic ‘age’ is fundamentally just a ratio of chemical species – namely the abundance of a radioactive parent isotope – the ticking clock of the system – and the product of its decay within your sample. Ultimately, this is just a number – nothing more or less…unless you have a physical event you can relate that number to. If I toss you a rock and say “this rock is 7,000 years old” – what does that mean? Is it 7,000 years since the rock crystallised? 7,000 years since it was knocked from a large boulder upstream? That it has spent 7,000 years tumbling back and forth in the surf? 7,000 years lying on the beach? All these ‘ages’ might have meaning – telling us something interesting about the history of this particular sample – but unless you know which one I mean, the manifold possibilities obscure the potential insight.

Nice looking piece of rock - so how old is it? And how would we tell?

Nice looking piece of rock – so how old is it? And how would we tell?

To address this confusion from the perspective of helium, let’s drill down from the scale of rocks and hammers to the sub-microscopic world of a crystal lattice. The comforting solidity and discrete character of the everyday is replaced by a dynamic constellation of atomic structures held in place by overlapping and interfering clouds of electrons and opposing forces – a seething maelstrom of movement and change. As those particles spin and vibrate, the force balances governing their interactions rise and fall, bonds parting and re-forming in the blink of a conceptual eye as their stability waxes and wanes. Take a moment to watch this video clip from Dr Erik Laegsgaard at Aarhus University.

Scanning Tunneling Microscope imagery of atomic-scale diffusion in titanium dioxide, created by Dr Erik Laegsgaard, Aarhus University. Recorded at 300 degrees Kelvin, and at 8.6 seconds/frame.

Each of those glowing orange orbs is actually an atom of oxygen resolved by advanced scanning tunnelling microscopy of a sample of titanium dioxide. To my thinking, this movie is mind blowing – this is not a cartoon, or a fancy computer model – this is an actual resolved record of real individual atoms, in solid material, at room temperature. Reflect for a moment on just how we see those atoms behave as the movie advances through time. Rather than locked in place like mosaic tiles set in mortar, they skitter back and forth – momentarily held in the embrace of one bond, but then twisting away across the crystalline dance floor to some new partnership. The movement is random and unpredictable – particles as likely to jump one way as any other.

This atomic diffusion is what was responsible for Strutt’s anomalous ‘leakage’. Although the movements are individually random, if you’re building up an increased concentration of something (as with the helium produced by alpha decay in the example of our geochronometer), then you’re statistically more likely to have those random movements going out of the radioactive crystal structure than into it. It follows that this diffusion will prevent the build up of your daughter product (helium), keeping the isotopic age stuck stubbornly at zero.

So how then do we stop diffusion happening and allow our ticking clocks to record time? How do we set the geological stopwatch running? The simple answer is temperature – you cool things down. The rate at which diffusion occurs is proportional to temperature raised to an exponential power. In essence, this means that even a small change in temperature leads to a very large change in diffusivity, and the transition from rapid diffusion – so rapid that all the daughter product produced by radioactive decay is lost – to negligible diffusion where all that daughter product is retained – occurs across a very narrow temperature range.

Rather than the aberrant or spoiled data Strutt took them to be then, helium ages, once we understand this process and calibrate its thermal sensitivity, become sensitive records of the temperature change associated with dynamic geological history.

How does this help us?

When Gil Grissom finds a gun at the scene of a murder in CSI (yes, I know Grissom left the show after series 9, but I always thought he had excellent style as an on-screen scientist, and geologically speaking, his tenure is pretty much still within error of the present), his first thought isn’t “I must find out how old this gun is” – no – there are far more dynamic aspects of the weapon’s history he would like to see resolved. When was it bought? How long ago was it fired? Who pulled the trigger?

Similarly, if we focus purely on the crystallisation age of our samples, as Strutt, Rutherford, and their contemporaries were, there are many potential insights we will miss.

When were our samples last thrust beneath the crushing weight of an uplifting mountain range? When did they last feel the rush of superheated steam carrying rich mineral endowment through subterranean fluid conduits, or the frictional warmth induced by an active fault boundary radiating through the crust? When did erosion wear away its weighty overburden to exhume our rock from the hot interior of the Earth? With the thermal ages provided by helium dating and its correlatives, these dynamic episodes come within our grasp.

What was simply noise becomes, when we understand and can translate its origin, a sensitive new record of dynamic geological processes.

Unlike Pratchett’s protagonists, our FBI database is ready, and the fingerprints of geological systems are waiting to reveal themselves to our careful detective work.

Gold in the Custard – Hidden Elephants and the Art of Mineral Exploration

Why do elephants paint their feet yellow?

So they can hide upside down in the custard.

Although I confess a fondness for such absurdist humour, even I have to admit that this joke is pretty much pitched at a level such that only someone under the age of six could truly enjoy it for its comedic value. If you will indulge me though, it does possess a kind of simple beauty that can serve to illustrate a useful concept for us. The image of someone failing to recognize an elephant in their custard is both vivid, and clearly ludicrous – painted feet or not. But hold on there a second – let’s pursue that particular surrealist idea down the rabbit hole to see how deep it goes. What if, perchance, you’d been warned about those devious pachyderms and their propensity for hiding on the dessert cart, and you were so busy checking for them that you were trampled to death by a wildebeest that had camouflaged itself behind the rhubarb?

Consider the process of mineral exploration. There are very few parts of the world where you can genuinely be the first person to explore the landscape and assess its potential mineral endowment. Others have almost invariably been there before you, evaluated the economic potential of the geology, and moved on. The art of exploration then is to find things that others have overlooked – or perhaps not even known how to look for. To look at the landscape in a different way.

The discovery of the rich Telfer mine in northern Australia presents a salient example here.

Telfer’s mineral endowment is hosted in ancient sediments folded into a series of elongated domes, the strata dipping away in all directions. Structures like this are sometimes referred to as dolphin-backs for their resemblance to one of our cetacean friends breaking the surface of the water – an apt metaphor here given the whale-like size of the mineral resource. Although also host to significant copper and appreciable silver, it’s gold for which Telfer is best known – and in respect of that commodity the deposit is truly world class, with around 10 million ounces of gold produced to date and another 20 million in the ground in the currently defined resource. Surely a jewel in any portfolio, and one of the most productive mines in Australia throughout the past 25 years.

Aerial oblique view of the Telfer Dome in 1976, prior to the start of major excavations of the deposit. Image is drawn from the archives of Newcrest Mining Limited, and was published in Ferguson et al. (2005) - 'Mineral Occurrences and Exploration Potential of the Paterson Area' - Report 97 of the GSWA.

Aerial oblique view of the Telfer Dome in 1976, prior to the start of major excavations of the deposit. Image is drawn from the archives of Newcrest Mining Limited, and was published in Ferguson et al. (2005) – ‘Mineral Occurrences and Exploration Potential of the Paterson Area’ – Report 97 of the GSWA.

By official reckoning though, at least three resource companies evaluated the Telfer deposit and walked away before Newmont Australia made the call and pegged it. How could they have missed this opportunity?

Therein lies the tale.

As with many major finds from the glory days of trail-blazing back country prospectors, the details of Telfer’s discovery have always been a little murky, and remain vigorously argued in some quarters up to the present day. What is not in debate, however, is that the first non-indigenous explorer to recognise the dome and consider its mineral potential was a Frenchman named Jean-Paul Turcaud, back in 1971.

Turcaud, had he but realised, was probably nine tenths of the way to what surely would have been a discovery of epic scale for an independent prospector, and rendered him an Australian legend, perhaps even a fitting subject for a heroic movie. Hollywood producers would have loved the story of a pioneering iconoclast who single-handedly opened up a whole new mineral province. Of course, they would have tried to make the main character American, and given him a wise-cracking but essentially lovable sidekick – but if the Turcaud of our alternate reality – his ‘Sliding Doors’ moment having gone the other way – balked at these narrative improvements, he could just have financed the film himself.

Turcaud recognised the spectacular folded form of Telfer’s dome structures, and appreciated the potential influence of such geological architecture on the concentration of ore minerals. He sampled the gossans – weathered remnants of mineralised veins – that ringed the amphitheatre of the main dome – including the spectacular 10m thick horizon that later became the economic heart of the Telfer mine – and then he took his observations (and his samples) to the major mining companies acting in Australia at the time, a couple of whom – Western Mining Corporation and Anglo American – were interested enough to come up into the remote country, inland from Port Hedland in the far north of Western Australia, with the field-hardened Frenchman and look over the ground for themselves.

But they all passed on the opportunity. They literally walked the ground over one of the largest gold deposits ever discovered in this country – a deposit already broken open by erosion and exposed at the surface like an earthworm popping up at a convention of hungry sparrows. They sampled the major ore-bearing horizons, had them assayed for their mineral content…and then walked away saying “not for me thanks Jean-Paul”. Why?

Because they forgot about the possibility of the wildebeest in the rhubarb.

Neither Turcaud nor – perhaps more indictably – the corporate geologists he took to the prospect, checked their samples for gold. Seriously.

Turcaud viewed the rich potential of the ground at Telfer with blinkers on, intellectually weighed down by a restrictive exploration model focused around base metals – copper, nickel, zinc, lead – the mineral darlings of the age, driving an exploration boom in Australia in the early 1970s. He was assuredly an excellent prospector – rugged, driven, and with enough understanding to appreciate the potential of good ground when he saw it. But he wasn’t a scientist, and lacked the curiosity and depth of knowledge that might have allowed him to make a leap of insight and realise that he was, quite literally, standing on a gold mine.

To be charitable, this might not be such an obvious failure as it seems at first viewing. Although there is significant coarse gold in the oxidised surface layers of the deposit, most of the gold at Telfer is so fine grained as to be invisible to the naked eye, and locked up inside sulphide minerals – principally pyrite. A real trick for young players then – the gold is IN the fools gold.

Never the less, it does represent an epic failure of imagination – pretty much the geological equivalent of checking your boots for scorpions and then being bitten on the toe by a red back spider. Any exploration geologist worth their salt could have picked up the presence of the coarse gold in 10 minutes by panning the streams dissecting the dome. And should have done if they had even contemplated the possibility.

So just how much gold was there?

Well, the question isn’t quite as simple as that – it’s not just a case arriving in the Great Sandy Desert with an armoured car and loading it up with bullion. Mining is an industrial process – in both its scale and its essential form. First and foremost, you need the capability of moving massive quantities of rock. Even at the appreciable grades touching 10g of gold per tonne they were taking off at Telfer in the first year of operations, you’re still talking about almost 3 tonnes of rock for every ounce of gold – and that’s just the ore. On top of that there’s all the overburden you need to strip off to get to that paydirt. So you’re talking about putting in serious infrastructure – roads or rail lines to move material and people in and out, accommodation for a workforce, water – and waste water treatment facilities – crushing plants and treatment mills to extract the minerals, and tailings dams to hold the processing waste.

When the money men who make such decisions green-light the massive investment spend on this kind of a project, it’s usually based on some serious forward planning around recovering costs and moving into nett profitability over the course of many years to decades. Once they broke ground at Telfer, Newmont Australia made back their capital costs within 10 months…at a gold price averaging around $US90 per ounce. Yes, there’s not a zero missing there. Looking from the perspective of gold currently fetching somewhere north of $US1600 an ounce, you get an idea of just what a rich prize this deposit was.

We’re not done yet though – the true beauty of Telfer as a cautionary tale is that it also provides us with an act 2 – an example of scientific exploration done the right way.

Having located their whale, Newmont pursued the logical follow up questions with vigour – where has all this gold come from? And how do we find some more?

One of the earliest major targets they identified was a granite body just beneath the surface, a few km to the south of Telfer. Gold mineralisation is commonly associated with intrusive rocks in one way or another, so the recognition of this granite in their geophysical surveys piqued the interest of the company’s exploration team – could this be the goose that had laid Telfer’s golden egg?

Well, no, unfortunately that particular idea didn’t work out. Not only is the granite very low in contained gold – too low to produce a significant ore deposit – it is also younger than the mineralised veins at Telfer, so there is no way it could have been involved in their development.

The morally uplifting kick to the parable though is that when they came up empty on their gold model, Newmont didn’t just pack up their drill stems and go home. No – they scanned the horizon to see what other beasts could be lurking on the dessert table, assaying their samples for a broad range of elements that might be carried by granitic magma. And lo and behold, it turned out they had drilled into one of the world’s largest tungsten deposits – a deposit now looking all the more strategically attractive for being one of the few major sources of this industrially important element outside Chinese control.

Turns out that even when you’re absolutely sure there are no scorpions in your boots, it might just pay to give them an extra shake.

Statement of interest – My position at the University of Western Australia is funded by a research contract with Newcrest Mining Limited, the current owners of the Telfer deposit.

Rosetta Stones and Rugged Men

The Rosetta Stone - prize exhibit of the British Museum...and extended scientific metaphor.

The Rosetta Stone – prize exhibit of the British Museum…and extended scientific metaphor.

There are all kinds of arguments to be made about the imperial history that saw Britain amass the huge treasure trove housed in the British Museum, and whether ‘finders keepers’ should actually be a valid point of international law. Unarguably though, this is one of the most glorious and inspiring concentrations of culturally significant historical artifacts in the world. And amongst all this splendour, the most visited antiquity is not some golden treasure or grand architectural marvel – but a relatively humble slab of rock – the Rosetta Stone.

This artifact has been displayed behind protective glass since 2000, but when I first visited the museum in the wilder (or perhaps more naive) days of the previous century, the stone was tantalisingly exposed to the world, lying in a steel cradle where I could have reached out to gently touch its ancient surface – had I dared risk that most severe of British reprimands, a stern and indignant tutting from an aging volunteer guide.

The stone itself is a slab of fairly fine grained dark granodiorite, a broken fragment of a previously larger tablet inscribed with a decree issued on behalf of Ptolemy V in 196 BC, commemorating his ascension to the Egyptian throne and proclaiming his divinity. Both the simple elegance of the stone and the content of the inscription though are pretty much run-of-the-mill absolute ruler of the ancient world stuff – they certainly don’t explain why this artifact is so inspirational and universally recognised (and consequently – human nature being what it is – was also the subject of a long running trademark dispute – recently settled – between Google and the software company Rosetta Stone Ltd).

No. The Rosetta Stone has entered our lexicon as the ultimate cypher – the key to breaking the deepest of codes – reviving a dead language.

The Ancient Egyptians were a famously literate society. We’re not talking the mass literacy of the modern world of course, with only around 1% of the population – at a generous estimate – able to read and write. This is a rate put to shame by even modern laggard states like Burkina Faso, where literacy extends to 21.8% of the population – the lowest rate in the world by current UN reckoning. Egypt’s 1% though stand out through the mists of history for having produced, among other milestones in the development of civilization, one of the earliest true traditions of narrative literature, recorded in an array of letters, poems, and commemorative autobiographical texts celebrating the careers of prominent officials. Above and beyond these temple walls and epic monumental writings of storied fame though, the Egyptians left a record of the day to day function of their highly ordered society – of harvests and recipes, contracts and legal disputes – on papyri and tablets that, crucially, have stood up to the ravages of time in the hot dry climate of the Nile valley and its surrounding deserts to preserve a historical record of the ancient world unique in its depth and completeness.

The important element for our story though is that when first re-discovered by the explorers and enquirers of an enlightened Europe intent on understanding and controlling (and returning to our opening discussion of the British Museum, often exporting) the mysteries of the world, this treasured store of information was locked away – hidden, denied to the hopeful scholars – behind the apparently impenetrable barrier of lost language – with understanding of both hieroglyphic (the famed pictographic writing of Pharonic tombs and Hollywood blockbusters) and the simpler demotic version of Ancient Egyptian erased by the shifting sands of time.

Where the Rosetta Stone enters the picture is that it’s pedestrian message of glory and Ptolemaic divine rule is inscribed not once, but three times in different languages – those two lost Egyptian scripts, and, crucially, the very much alive (at least for upper class educated Europeans of the 19th century who had been to the right schools) ancient Greek – for which we can thank the fact that the Ptolemaic dynasty was actually founded by Macedonian general Ptolemy Soter in the carve-up of Alexander the Great’s empire in 323BC. Even in its broken state (none of the three versions of the inscription is complete), this combination provided a starter’s kit for the eventual translation of the previously lost Egyptian languages. The Rosetta Stone, in essence, provided a single example of spectacular clarity that made sense of a much larger array of other information, unlocking that vast catalogue of previously indecipherable records.

The concept of a cypher along these lines – an example of disproportionate significance and worth – is not uncommon in observational science. We often look to sites and specimens where relationships or natural processes seem expressed with unusual clarity or simplicity in order to illustrate our ideas or to use as the basis of discussion.

This is not a new idea – indeed, it’s as old as the science of Geology itself. James Hutton – the 18th century Scottish polymath who surely boasts a claim as strong as any to be the intellectual father of my field of work – didn’t try to explain his theories on the dynamics of the world by picking up the nearest pebble. On the contrary – he was renowned for taking friends and dignitaries on field trips to view exceptional exposures he had located that seemed to present particularly clear examples of the phenomena he was discussing. His Rosetta Stones.

Even today, we look to such unusual examples where the complexity and vagaries of natural history seem momentarily brushed aside to reveal unambiguous evidence of a physical process in action. If I had a dollar for every grant proposal I’ve been asked to review that promised one area or another would represent an ‘ideal natural laboratory’ in which to investigate some geological phenomenon…well, it might not allow me to retire comfortably to the south of France, but I could probably endow a small academic prize – perhaps in original science writing avoiding the use of meaningless and hackneyed phrases.

The corollary to the importance of such examples though is the critical question – where should we look for our Rosetta Stones? To give away the ending here, the smart money is on “anywhere and everywhere”…but the interesting thing from my point of view as an educator is that this measured insight is often very difficult to impart. Rather, there is a persistent belief that the importance of an outcrop is (or at least, with a plaintive appeal to cosmic justice, should be) in inverse proportion to the ease with which it can be accessed.

Release a group of students into the wild on a mapping exercise – especially, it should be said, young male students, and their first reaction usually isn’t to sit down and plan an efficient programme of work. It’s to decamp to the highest, most rugged, least accessible area of the field.

At the heart of this challenge lies some pretty fundamental human psychology. We love stories – and whatever we might tell ourselves, we spend much of our lives with an ear half tuned to an internal narrative of how our actions stack up. “I had to ford the river in spate, vanquish the dragon, then climb to the highest room in the tallest tower” is just more appealing than “well, I just poked about under the bush and there it was.”

Which leads me to the rugged man maxim – an empirical law derived from observation of generations of young Earth Science students in action. In its purest form, this represents a belief that the most important outcrop in a district – the most informative, the most significant to unravelling the ambiguous twists and turns of geological history – will be found at its pole of inaccessibility: the hardest point to reach. There is an important coda to this as well – to the effect that If possible, it should also be raining when you discover it.

Besides giving rise to a host of sore and sun-burnt students though, does the Rugged Man Maxim stack up when it comes to results? All those trips I took to Andalucian Accident and Emergency departments trying to help testosterone-fuelled young men explain in broken Spanish just where the thorns were lodged – were they actually associated with greater understanding on the part of the bandaged apprentice geologists, and higher marks in their mapping projects?

I think we all already know the answer to that question.

Certainly, physically and logistically challenging fieldwork can produce results of great significance and enrich our understanding of fundamental questions. But the importance of a locality does not derive from its accessibility or spectacular grandeur – it is incidental to it.

The Burgess Shale was discovered in 1909 by paleontologist Charles Dolittle Walcott in a remote mountain pass high in the Canadian Rockies. As well as giving Walcott and later workers an excuse to spend summers working far from the madding crowd in as jaw-droppingly spectacular a wilderness setting as you could hope to find, the exquisitely preserved 505 million year old fossils extracted from the shale provided a new window on life in the ancient Cambrian oceans – a Rosetta Stone that changed and enhanced our understanding of a host of other, less complete and more poorly preserved fossil fauna.

At the other end of the scale, you can get to the La Brea Tar Pits in urban Los Angeles on the Metro Rail – but that doesn’t stop the Pleistocene fossil fauna preserved in the tar being any less inspiring and scientifically significant in its own way, as the best known and most exquisitely preserved record of the extinct mammalian megafauna of North America.

Neither methodical and thorough investigation nor boundless investment are guarantees of significant discovery, and equally, sometimes it really is simply enough to be in the right place at the right time – as in 1928 when William P. “Punch” Jones and his father were playing horseshoes in Peterstown, West Virginia, and happened to turn up a 34.48 carat alluvial diamond, the largest such gem found in the United States to date.

Fundamentally, there is no justice in the layout of the world and its scientific treasures. The key exposure that will lay clear the mysteries of a study area may well sit under a poisonous thorn bush atop the windswept peak of the highest mountain in the district. But it’s just as likely to be in a carpark next to an excellent little cafe where you can enjoy an iced coffee and a gourmet pie after you’ve knocked it off.

And at the end of the day, it’s not the detail of the story that counts – it’s how you tell it.